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ABSTRACT 

This report presents a combined analytical and experimental investigation of 
turbulent heat transfer on basic and composite configurations at hypersonic speeds. 
The analytical results are presented in Volume I, the experimental results, including 
data-iheory comparisons, are presented in Volume II, and computer programs 
incorporating the analytical methods described herein are presented in Volume III. 

Two analytical approaches are presented:   the PrMr method and the turbulent 
nonsimilar boundary layer method. 

The PrMr method, which is derived from the boundary-layer mome-tum and 
energy integral equations, is recommended for predicting turbulent hea ing rates. 
Effects of dissociation, pressure and wall temperature gradients, three ■HiTnor.sionai 
flow, and nose bluntness are included.   Simplified methods for making turbulent 
heating estimates using a slide rule or desk calculator are also presented.   The 
computation of heating rates on a typical reentry configuration in flight and the 
extrapolation of test data from ground test facilities to flight are described. 

The turbulent nonsimilar boundary layer approach offers several advantages 
over previous methods, and is recommended for specific parametric studies of 
turbulent flows.   Calculations made using this method have been restricted to ideal 
gases.   Modifications can be made to include real-gas effects. 
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SYMBOLS 

a,b,c constants in turbulent-shear correlation, Equation (C-37) 

A boundary-layer thickness parameter. 2 + (ö*/ö) 

ALT altitude \ 

h equivalent distance in the absence of streamwise pressure gradients, 
eq Equation (A-65) 

c specific heat at constant pressure 

c specific heat at constant volume 

C coefficient; constant 

C constant in blunt-body correlation. Equation (74) 

CD drag coefficient, D/f( 1/2)   (P^ u« ) S] 

Cf skin-friction coefficient,  T  /[(1/2)   (p u2)] 

C lift coefficient, L/[(1/2)   (p^u^S] 

C constant in boundary-layer shear law, Equation (4) 

Cp pressure coefficient, (P - Po0)/[(l/2)   (p^ uj)] 

Cn constant in boundary-layer heat-transfer law, Equation (3) 

C constant in boundary-layer shear law. Equation (5) 

d constant in compressible shear correlation, Equation (C-39) 

D nose diameter; leading-edge diameter; drag force 

E crossflow momentum thickness, Equation (A-25) 

E momentum thickness ratio, E/6 

f streamline divergence due to crossflow pressure gradients. 
Equation (A-10) 

F function of x, Equation (A-12) 

lx 

i 



SYMBOLS (Contiaued) 

F^ Prandtl number function, Equation (A-23) 
Pr 

F equivalent distance function, Equations (A-63) and (A-64) 

Tß function of pressure gradient parameter ß, Equation (A-50) 

Fy function of density parameter, Equation (A-52) 

g scale factor on y, see Appendix A 

G boundary-layer parameter, Equations (60) and (A-47) 

h height of reference streamline above surface, Equation (63) 

H heat-transfer coefficient based on enthalpy, q/(i      - i  ) 

H transformed heat-transfer coefficient. Equation (A-12) 

i static enthalpy 

i energy absorbed in dissociation 

I total enthalpy, i + (u2/2) 

J streamwise pressure-gradient parameter, Equation (A-24) 

k thermal conductivity 

i mixing length. Equation (1) 

^ diffusion influence parameter, q/qNip = i   Equation (A-22) 

m exponent on boundary-layer shear and heat-transfer laws. Equations 
(3) and (4) 

m mass flow rate 

M Mach number 

M Mach number component normal to surface. Equation (52) 

N Lewis number 
Le 

N reference Nusselt number, see Figure 3 
Nu 



SYMBOLS (Continued) 

N Prandtl numlx?r 
Pr 

N Reynolds number 
R 

Ngt Stanton number,  q/[(iaw - i^   (P« u«)) 

N streamline divergence parameter. Equation {52) 

P pressure: streamwise pressure-gradient parameter. Equation (A-33) 

P dimensionless pressure, P/(p   u   ) 

q heat-transfer rate 

Q boundary-layer energy thickness, Equation (A-8) 

Q transformed boundary-layer energy thickness. Equation (A-13) 

r streamline divergence due to body geometry; recovery factor. 
Equation (C-40) 

R gas constant in equation of state 

R nose radius 
n 

R' effective shock radius of curvature, Equation (66) 

S surface distance measured from stagnation point along centerline 

S skin-friction equivalent distance, Equation (9) 

T temperature 

u velc. ity component in x-direction 

U transformed x-component of velocity, Equation (A-12) 

v velocity component in y-direction 

v velocity ratio, v f\x 

v effective velocity, Equation (C-4) 

V transformed \-component of velocity, Equation (A-12) 
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SYMBOLS (Continued) 

w velocity component in /-direction 

x streamwise coordinate along body surface; surface distance 

x,y,z curvilinear coordinates 

x heat-transfer equivalent distance, Equation (8) 
eq 

x' distance from nose to heated surface, see Figure 7 

X,Y,Z transformed x,y,z coordinates, Equation (A-12) 

Z compressibility factor, P/(pRT) 

a angle of attack 

a effective angle of attack at stagnation line, (90° - A .,) 

ß pressure gradient parameter, Equation (A-51); wing apex angle, 
(QO0  ~ A). Equation (52) 

Y ratio of specific heats, c/c 
P    v 

ö boundary-layer thickness: angle between free-stream velocity vector 
and local tangent plane 

6* boundary-layer displacement thickness 

6 transformed boundary-layer thickness, Equation (A-10) 

A total streamline divergence, rf; streamtube width at the boundary- 
layer edge 

Ax,Ay increments in \ and y 

e crossflow energy thickness, Equation (A-9): velocity perturbation, 
Equation (C-4f5): shock angle with respect to free-stream velocity 
vector: effective turbulent viscosity 

€ energy thickness ratio,   e/Q 

£ dummy variable in x, Equation (57) 

TJ cone half-angle 
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SYMBOLS (Continued) 

6 boundary-layer momentum thickness 

® transformed boundary-layer momentum thickness. Equation (A-2H) 

A sweep angle 

/i absolute viscosity 

^ shock standoff angle 

P density 

<J partial Prandtl number for translation, rotation, and vibration only 

Z mean density ratio, Equations (A-53) and (A-57) 

T shear stress 

T transformed shear stress 

T Rejnolds stress 

0 surface angle measured from stagnation point or stagnation line 

0** streamline correlation function, Equation (52) 

$ thermal potential parameter, Equation (54) 

$ streamtube angle at stagnation point. Equation (63) 

a is proportional to 

Subscripts 

aw adiabatic wall 

BL boundary layer 

c crossflow 

CL centerline 

e boundary-layer edge 

eff effective 
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SYMBOLS (Continued) 

FLT flight 

i.j indexes 

inc incompressible 

L. laminar 

m matching point; mean 

n normal: nose 

ns neutral stability 

NS evaluated for entropy level behind a normal shock 

o evaluated at stagnation reference conditions; evaluated for Me = 0, 
Equation (29): evaluated at x - 0, see Section VI 

P pressure 

Q evaluated for xetl 

r evaluated at enthalpy and composition corresponding to pr ^r 

ref reference 

s streamwise 

S stagnation; evaluatec for S 

Sh evaluated for a sharp nose 

SL stagnation line 

S' evaluated at stagnation enthalpy and local pressure 

T turbulent 

TNS turbulent nonsimilar method 

TP tangent point 

w wall 
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WT wind tunnel 

x based on distance x 

2-D two-dimensional flow 

3-D three-dimensional flow 

oo free-stream or undisturbed condition 

Superscript 

n exponent in Equation (52) 

-     (bar) normalized value 
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SECTION I 

INTRODUCTION 

1. REQUIREMENT FOR HEAT TRANSFER PREDICTION METHODS 

The need for better methods for estimating aerodynamic heating rates is contin- 
ually increasing.   Relatively crude approximations have usually been adequate for 
estimating surface temperatures on supersonic aircraft and ablation protection re- 
quirements for ballistic reentry capsules.    However, the design and operating limits 
of hypersonic cruise and maneuverable reentry vehicles ox the future will be more 
sensitive to aerodynamic heating considerations.    This will require more accurate 
heat transfer prediction methods. 

The prediction of turbulent heaiing presents a particularly serious problem for 
two reasons.    First, turbulent heating rates are usually much higher than the corre- 
sponding laminar values.   Since the conditions required for transition from laminar to 
turbulent flow cannot yet be predicted with confidence, design estimates in regions of 
uncertainty must be based on the higher turbulent estimates.   Secondly, the complexity 
of turbulent flows necessitates the use of simplifying approximations and empiricism 
in formulating the fundamental flow equations; thus, methods for predicting turbulent 
heating rates are inherently less reliable than laminar methods. 

2. PRESENT INVESTIGATION 

A two-year investigation, including both analytical and experimental studies, was 
conducted to provide and verify methods for predicting turbulent heating rates on 
basic shapes and composite bodies at hypersonic speeds.   Results of the analytical 
studies, including recommended methods, are presented in Volume I of this report. 
Experimental results and data-theory comparisons are presented in Volume II. 

Two basic methods are presented.    The first, the Pr^r program, is recommended 
for making turbulent heating estimates.    The second, the turbulent nonsimilar program, 
represents a new approacn in treating turbulent flows, and is intended for basic studies 
of turbulent boundary layer phenomena.    Both have been programmed for the SRU 1108 
and IBM 7094 digital computers.   A description of these computer programs is given 
in Volume III of this report. 

a.      PrMr Method 

The PrMr method for predicting heat transfer and skin friction for both laminar 
and turbulent flows was developed by Richard A.  Hanks of The Boeing Company in the 
course of the X-2Ü program.    Modifications and refinements of this method were made 
under a subsequent NASA contract (Reference 1).    The method presented here is 



essentially the same as that presented in Reference 1, although some modifications 
to the computer program were made during the present study. 

The derivations of the basic Pr^r equations presented in References 1 and 2 
were based on solutions ol the boundary-layer momentum integral equation.    This 
equation was transformed into an equivalent incompressible form using a coordinate 
transformation suggested by Mager in Reference 3.    The transformed equation was 
solved tj obtain an expression for skin friction.    The corresponding heat transfer 
equation was then obtained using a generalized form of the Reynolds analogy. 

A new derivation leading to the same result for heat transfer, but based on a 
solution to the transformed boundary-layer energy integral equation, is presented in 
Appendix A.    The heat transfer equation obtained from the solution of the energy 
integral contains boundary-layer thickness parameters and reference density and 
viscosity terms as undefined functions.    These functions represent effects of fluid 
property variations, finite streamwise and crossflow pressure gradients, and stream- 
line divergence.    For laminar flow, these function    vere evaluated by exact solutions 
for self-similar boundary layers.    Analytic expressions were found that agree with 
essentially all of the exact similar solutions. 

The derivation of the basic PrMr heat transfer equation and the correlations used 
in defining the undefined functions for laminar flow are presented in Appendix A. 
Expressions for evaluating the turbulent functions are presented in the following 
sections. 

Because of the overall complexity of the PrMr equations, this method is not 
recommended for making hand calculations.   Handbook methods for estimating both 
laminar and turbulent heating rates using the PrPr method are presented in 
References 4 and 5.     Simplified approximations to the pr)ir equations permitting 
hand calculations are presented in Appendix B of this report.   Predictions obtained 
using the simplified equations are usually within 5% of the computer results. 

b.     Turbulent Nonsimilar Method 

The turbulent nonsimilar method is an extension of the laminar nonsimilar method 
reported in References 1 and (i.    In this method a semi-empirical expression is used 
to establish the Reynolds stress term appearing in the momentum equation.    The 
corresponding conduction term in the energy equation is then related to the Reynolds 
stress by an effective turbulent Prandtl number. 

The turbulent nonsimilar method for flows was developed before the present study 
was started.    During this investigation it was extended to include compressibility effects. 

1   Reference 1 supplements Reference 5.   Except for delta wings at angle of attack, 
turbulent heating estimates obtained from these reports are nearly identical. 



The analysis was conducted to provide a method for computing velocity and enthalpy 
profiles in a compressible turbulent boundary layer including the effects of pressure 
and wall temperature gradients. 

The derivation of the turbulent nonsimilar equations is presented in Appendix C of 
this report. 



SECTION II 

BASIC METHODS 

In contrast to Ihc well-developed theoretical methods available for laminar flows, 
no truly analytic basis exists for treating turbulent boundary layers.    The unsteady 
velocity fluctuations greatly complicate the mathematical description; consequently, 
all turbulent methods are founded, at least in part, on empirical correlations. 

1.     GENERAL APPROACHES 

Most turbulent analyses are based on the assumption that turbulent flows are 
analogous to laminar flows with special viscous and heat conduction properties.    These 
special properties can be expressed in either the fundamental equations of motion in 
differential form or in the boundary layer momentum and energy integral equations. 
An example of the first type is furnished by the well-known mixing length theory. 

a.     Mixing Length Theory 

For incompressible flow,  Prandtl hypothesized that: 

du 2 

9.y 9V a) 

The mixing length is denoted by JE.    Prandtl further suggested that I was nearly 
proportional to the distance from the wall.    Equation (1), using the approximation that 
I  is proportion to y, was found to provide good incompressible skin-friction estimates 
and velocity profiles when the shear was assumed to be constant with y (Reference 7). 
This latter nssumption is clearly u-ireaiistic for exterior boundary layers, since the 
Reynolds stress must approach zero at the edge of the boundary layer. 

Many other methods using mixing length theory have been reported, including a 
widely user! method for compressible flows developed by van Driest (Reference 8). 
However, most of these methods are based on assumed velocity or shear profiles.   In 
addition, restrictive assumptions regarding flow similarity have been required in order 
to solve the flow equations, thus limiting these analyses to flows with no pressure or 
wall temperature gradients.    Fewer assumptions are required by the turbulent non- 
similar method,  which is described in Appendix C.    The method utilizes a shear 
correlation similar to the mixing length correlation given by Equation (1), but removes 
many of the restrictions imposed by previous analyses.   By solving the boundary-layer 
conservation equations in partial differential form, velocity and temperature profiles 
are then obtained at- part of the solution.    No limitations arc imposed regarding pres- 
sure or wall temperature gradients except that separated flows cannot be treated. 



b.     Integral Methods 

Boundary layer methods derived from momentum and energy integral equations 
are often much easier to use than methods requiring the exact solution of the flow 
equations.   The energy integral equation, Eq.  {A-9), derived in Appendix A of this 
report and the momentum integral equation derived in Appendix B of Reference 2 can 
be expressed in the forms given below: 

au H 
9x    ^ 

1   " e      1   We     1 8r    E 8f 
pu 
e e lu   ax    p   ax    r ax   f ax 

L e              Ke 

Tw (2^ö*/0)aUe +   1   3pe + 1 ar 
2 

P u e e 
u        ax     n  ax     r ax 
e                    Ke 

E af 
f ax (2) 

The equations given above are exact, except for the usual boundary layer assumptions, 
and are valid for both laminar and turbulent flows.   However, the solutions to 
Equation (2) are quite different for laminar and turbulent flows, since the velocity and 
enthalpy profile parameters used in solving the equations are different. 

2.     PrMr METHOD 

a.    Basic Formulation 

The PrMr equations are derived in Appendix A from the boundary layer energy 
and momentum integral equations. The basic correlations are of Blasius type, and 
are given by: 

HT = 

p  u u prrr t Q 

PQ Tn u  Ol 
e e 

1/m (3) 

Tw,T P P u 
r   r e m 

p u 0 
e e 

^o J 

1/m (4) 



The symbols m, Cm, and CQ arc profile parameters, Ö is the momentum thickness, 
and Q is the energy thickness.    Momentum and energy thicknesses are defined in 
Appendix A, as are methods for evaluating the reference density-viscosity product 
pr*v 

The integral equations are reduced to an incompressible form using a modified 
Stewartson transformation and are given in detail in Appendix A.   The resulting 
equations, in physical coordinates, for H,   Tw/ue, and 9 are: 

c   £, 
H - 

x    ^o 

Pr   eq 

p   H u   x 
r    r e   eq 

m 
m-1 

(5) 

r      C    M 
w -   x    0 

"u" ~    S     ' 
e eq 

p   u   u   S 
r    r   e   eq 

m 
m^l 

(6) 

ml Ho e = c 
m      x  p u 

e   e 

P   p   u   S 
r    r   e   eq 

m 
m7! 

(7) 

where the equ.valent distance parameters xec    and Se^ are defined by: 

eq.T ra+ln 

Jrr  p   p   u   {ri^) 
.Trie 

m-1 
m 

Pr MrUe (rfE) dx (8) 

eq.T m+1 

PTPrPrUe
A(rfE)   m 
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p   p   u   (ri^) 
r rr   e v      ' dx (9) 



The equivalent distance xeq T is used only in computing heat transfer, and Seq^ 
only m computing skin-friction and momentum thickness. 

Methods for evaluating the terms appf ring in Equations (5) through (9) for 
laminar flow are given in Appendix A.    Expressions for evaluating the equations 
given in the following sections reflect the latest state-of-the-art, and are essentially 
the sam t as reported in References 1 and 4. 

For turbulent flow, the profile constants Cx and m are discussed later in this 
section.   Methods for evaluating the other parameters are presented in the following 
sections. 

Symbol Definition Section 

p   \i. reference density-viscositv product III 
r    r 

ji reference stagnation viscosity III 

F influence of Prandtl number on heat transfer, q/q       1 III 

«f influence of atomic diffusion on heat transfer, III 

q/qx, 
' Le =  i 

J profile parameter reflecting pressure gradient effects IV 
on heat transfer 

P profile parameter reflecting pressure gradient effects IV 
on wall shear stress 

r streamline divergence parameter due to body geometry V 

f streamline divergence parameter due to crossflow V 
pressure gradients 

E crossflow momentum thickness V 

b.     Evaluation of Cx and m 

The profile parameters Cx and m are by definition; as in the laminar case, 
independent of pressure gradients and flow compressibility; hence, these parameters 
can be evaluated on the basis of incompressible fiat-plate flow.    For this case 
pr |ir = pe fie, n0 = ne[ am' x     = S     = x; thus. Equations (5) and (6) simplify to: 

n ,        .   m 

H       X    e 

FPr X 
NR.e (10) 



Me 
C   = J C   — 

f x   x 
N R.eJ 

m • 1 

(H) 

When Cx = . OJUii and m = 4,  Equation (10) corresponds to the Colburn equation, and 
Equation (11) becomes the familiar Blasius expression.    No heat transfer data are 
available for comparative purposes, since the very low heating rates associated with 
nearly incompressible gas flows cannot be accurately measured.   Comparisons with 
skin friction data show that Cx and m are themselves functions of the Reynolds 
number.   To include this variation with Reynolds numbers would greatly complicate 
computations; hence, an alternate formulation for the skin friction expression was 
sought. 

After a survey of several proposed incompressible friction formulas, a minor 
modification of the Schultz-Grunow equation (Reference 9; «as selected: 

V 
^lO^R.e 3000) 

584 
(12) 

The modification is the addition of the constant 3000 to the Reynolds number.    This 
modification was made in order to provide more realistic values of Cf at Reynolds 
numbers below 10"! (see Figure 1). 

The modified and unmodified expressions are shown in Figure 1, together with 
other available methods.   As shown, there is little difference between the various 
methods, except that the Blasius equation falls low at high values of Reynolds number. 
Equation (12) was originally selected because of its slight conservatism, although any 
of the other expressions could have been used. 

The form of Equation (12) does not lend itself to calculations in the framewt^k of 
Equations (10) and (11) due to the variation of m with Reynolds number.    However, 
comparisons have been made that show that m = 4 is an adequate approximation for 
e\aluating geometric effects.    For example, if m  is evaluated at particular values 
of Reynolds number using Equation (12) the following comparisons are obtained; 
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d (h .ct) IT 

flat plate 
d (In 

\e> 

3. 45 1.20 

4.0 1. 17 

4.34 1. 16 

(i. 12 1. il 

H 
cylinder 

H 
cylinder,  m     4. 0 

.09 

1.00 

1. 00 

1.01 
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Thus the effect of variations in m is seen to be small.   Accordingly, in = 4. 0 was 
selected for calculation of geometric effects presented in Sections III, IV, and V. 

However, since sizeable errors can result from using m = 4 in Equations (5) :.nd 
(6), the basic form of Equation (12) has been adopted.   The new expressions replacing 
Equations (5) and {(>) are: 

185 £n 
HU = 

o 
N 

R,r,Q 
T     FPrXeq.T   K0 (NR> r>Q ' 3000)| 2.584 

(13) 

V T . 185 n N 
R,r,S 

Ue Seq,T    |log10(^R)r>s     3000)|2-584 
(14) 

where 

N 
p    /i   u   x rr ^r   e   eq,T 

R.r.Q 
(15) 

and 

N 
P    U   u   S      ^ 
r    r   e   eq,T 

R,r,S 
(16) 

The definitions of xec. j and ^eq.T arfc; given by Equations (8) and (9), respectively. 

The Schultz-Grunow expression for momentum Ihickness of an incompressible 
flat-plate boundary layer is given in Reference 9 by: 

= .2135 
lo*noVe--407 2.64 

(17) 

riv equivalent pr u   expression is: 

N 
= .2135 

R.r.S 
P   u e   e ^loVr.S .407 

2.64 
(18) 
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SECTION ni 

COMPRESSIBILITY AND DISSOCIATION EFFECTS 

The influence of compressibility and dissociation effects on heat transfer and 
skin friction is usually accounted for by basing the density and transport properties 
(i.e. , coefficients of conductivity and viscosity) on some reference thermal param- 
eter.   For example, reference temperatures (or enthalpies) based on a weighted 
average of the wall, adiabatic wall, and ooundary layer edge temperatures (or 
enthalpies) are commonly used as a thermal reference.   The Pj-^r method differs 
from the common reference temperature methods in two respects.   First, a reference 
density-viscosity product PrMr is evaluated instead of a reference temperature and 
secondly, a reference stagnation viscosity n0 must be evaluated.   Other correction 
terms appearing in Equation (13) reflecting effects of compressibility and dissocia- 
tion are expressed by the Prandtl number function Fpr and the Lewis number 
function £. 

1.     EVALUATION OF REFERENCE DENSITY-VISCOSITY PRODUCT 

The reference density-viscosity product for turbulent flow is taken to be the 
laminar value defined by Equation (A-42) in Appendix A and plotted in Figure 2 (for 
air in chemical equilibrium, the density-viscosity ratios required to obtain prMr 

can be obtained from Figure 3).   This basic identity is suggested by the fact that 
PrMr appears only in connection with the laminar shear terms of the turbulent 
boundary layer equations^.   Further justification is provided by the excellent agree- 
ment between estimates from the PrMr method and most experimental data obtained 
from several facilities covering a wide range of test conditions. 

Comparisons of pr/ir predictions v\ith flat plate heat transfer data obtained from 
the Cornell Aeronautical Laboratory (CAL) 48" shock tunnel and reported in Reference 
1 are shown in Figure 4.   The PrMr correlations given by Equation (A-42) provide 
good agreement with X-15 flight data as shown in Figure 5.   The X-15 comparisons 
are especially noteworthy because of the lack of agreement with other widely used 
methods.   These compar'sons demonstrate good agreement between theoretical pre- 
dictions and experimental measurements.   More recent flat plate data obtained from 
the CAL shock tunnels and reported in Reference 10 are shown in Volume II of this 
report to be substantially higher than the PrMr estimates.   The reason for the 
discrepancy between the two sets of data is not fully understood at this time.   Some 
of the possible causes are discussed in Volume II. 

E.g. , Equation (13) in Reference 3. 

I I 
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2.     REFERENCE STAGNATION VISCOSITY 

Since the reference stagnation viscosity does not afpear in the laminar equations, 
no inforn.ation regarding its evaluation can be obtained by examining the laminar 
solutions.   The reference stagnation viscosity is assumed by Mager (Reference 3) to 
be the viscosity evaluated at stagnation conditions.   For real-gas Row with the vis- 
cosity dependent on the pressure it seems more realistic to consider the local flow 
composition rather than the composition corresponding to stagnation conditions. 
Accordingly, MQ is calculated with the Sutherland law and pr using the value of 
specific heat corresponding to PrMr.   The result is: 

|(ZT)r + 200 

(ZT)r(-r-j+200 

(19) 

When prMr and local pressure are known, the compressibMity-temperature product 
ZT can be obtained for air in chemical equilibrium from Figure 3.   The corresponding 
reference enthalpy ir can then be determined using Figure G. 

EVALUATION OF PRANDTL NUMBER AND LEWIS NUMBER PARAMETERS 

As with the Pr^r correlations, the effects of Prandtl number on turbulent flat 
plate heat transfer are assumed to be identical to the laminar case, the correction 
term is: 

645 
Pr (20) 

Where a is the partial Prandtl number for translation, rotation, and vibration. The 
subscript r denotes that a is evaluated at the enthalpy and composition correspond- 
ing to Pr^r-    For equilibrium air,  a can be obtained from Figure 7. 

Similarly, no analytic basis has been found for determining the influence of 
atomic diffusion on turbulent neating rates.   Furthermore, the combination of high 
pressures and temperatures required to obtain significant dissociation of air in 
turbulent boundary layers cannot be obtained in most present-day ground test 
facilities. 
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In the absence of a rigorous method, the influence of dissociation is assumed to 
be the same for turbulent and laminar flows.   The laminar expression for £ is given 
by Equation (A-41) as: 

52     ^/'ü.r 
^WNU -'H-r1; <2i> 

A plot of ^ as a function of enthalpy and pressure for equilibrium air and a Lewis 
number of 1.4 is presented in Figure 20 in Appendix A. 
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SECTION IV 

STREAMWTSE PRESSURE GRADIENT EFFECTS 

Except for boundary layer profiles, the effects of pressure variations on heating 
and skin friction are reflected in the product Pr/irue appearing in the integrand in 
Equations (8) and (9).    Changes in boundary layer profiles resulting from pressure 
gradients are accounted for in Jj and Pj appearing In the same equations. 

At the time that these correlations were made (1964 and 1965), no reliable methods 
were available for estimating turbulent profile alterations due to streamwise pressure 
gradients.    Consequently, the selection of expressions for evaluating J- and ?„ are 
based on comparisons with experimental data.    The general form of these equations 
is based on the corresponding laminar relations presented in Appendix A.    The 
expressions selected are: 

JT=JL=  |l-.718(/I-F^sF^s-l)|   when   ^ > 0 (22) 

and. 

Also: 

J„=JI~     1-v .718(/l- F.     F..     -I)!"1   \vh"n   ß  <0 (23) 
TLl v (3.si,si s 

PT^PL=JL (21) 

Expressions for evaluating F        and Fy      are given in Appendix A by 
Ecjuations (A-50) through (A-53). 
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SECTION V 

THREE-DIMENSIONAL EFFECTS 

.Although three-dimensional effects on turbulent heating are significantly less than 
for laminar flow, these effects can still be substantial.   In particular, sizeable in- 
creases in heating due to crossflow pressure gradients can be experienced on leading 
edges and along the stagnation line of axisymmetric bodies at angles of attack. 

In the present analysis, three-dimensional effects on heat transfer are reflected 
in the equivalent distance defined by Equation (8).   The influence of streamline diver- 
gence due only to body geometry is determined by r,   and that due to pressure gradi- 
ents normal to the direction of flow by f.   The combined effects of body geometry and 
crossflow pressure gradients on the streamline divergence at the boundary layer edge 
is defined by A,  where: 

A =  rf 

Streamlines   _ A(x)      ^x 

The reason for treating the two causes of three-dimensional flow separately is 
that crossflow pressure gradients distort the crossflow velocity profile, whereas body 
geometry does not.   The evaluation of the influence of this distortion on heat transfer 
is easier when crossflow effects are considered separately from geometric effects. 

1.     GEOMETRIC EFFECTS-r FACTOR 

The streamline divergence parameter   r is generallyuscdin connection with axisym- 
metric flows, and is then defined as the circular radLis of a body.   In this analysis r is 
considered to be the distance between two adjacent streamlines at the edge of the bound- 
ary layer over the respective surface, and in the absence of crossflow pressure 
gradients.   For most applications r can also be considered to be proportional to the 
body radius of curvature in the plane normal to the streamline. 

An exception to this rule, delta wings at angle of attack,  is discussed later in this 
section. 

21 



The simplest example of three-dimensional flow occurs on an unyawed cone in a 
uniform hypersonic flow.   Noting that pressure is constant, and considering that the 
wall temperature is also constant, the product pr(irue appearing in Equations (8) and 
(9) is constant.   Also, from Se    on IV it is seen that Jj and P-p are unity; hence. 
Equations (s) and (9) reduce to: 

eq,T        eq,T 
hi 5/4 Jf, 

5/4 . 
r      dx (25) 

l 

The streamline divergence parameter r is proportional to the circular radius, 
and is therefore proportional to x.   Considering that H is approximately proportional 

_9 to Xgf^ 7 •-, it is seen that: 

cone 
11 

2-D 
(!)'-• 

176 (26) 

For other types of unyawed axisymmetric bodies, the pressure is not usually constant, 
and the variation in prprue must be considered. 

2.     CROSSFLOW PRESSURE GRADIENTS-f FACTOR 

Estimating the effects of crossflow pressure gradients is more difficult than 
effects of body geometry because of rotation of the streamline patterns in the boundary 
layer.    For example, consider the differences in the streamline pattern on an unyawed 
cone and a swept cylinder stagnation line sketched below: 

Apex 

Conical Flow 

Stream- 
lines at 
all values 
ofy 

Stagnation 
/ 

line 
<£ 

W X 

Streamlines 

  y = ö 

Swept Cylinder Flow 

 y = 6/2 

 y = 0 

The crossflow streamline divergence parameter f can be considered as proportional 
to the distance between two adjacent streamlines at the edge of the boundary layer in 
the absence of geometric effects.    Methods of estimating f are presented later in this 
section. 



The influence of the streamline rotation illustrated above is reflected in the cross- 
flow momentuin thickness ratio K.   When streamiines are parallel throughout the 
depth of the boundary layer at a given station, then u/ue = v/ve.   It is seen from 
Equation (A-25) that E is unity for thiö case, and the effect of f becomes identical 
to that of r in the expression for heat transfer.  Equation (5). 

a.     Evaluation of E~ 

— 
The behavior of E in turbulent flow can be described only qualitatively, and most 

published analyses neglect its effect.   However, its effect is usually to increase heat- 
ing rates and is therefore included in the present method.   As in the streamwise 
pressure gradient case, the turbulent values are based on modifications of the corre- 
sponding laminar correlations.   However, unlike the streamwise parameter JL,   E^ 
is strongly influenced by Mach number, so that a dual modification is required. 

Considering incompressible flow, it is seen from the definition of Equation (A-25) 
that the upper limit on E is ö*/0  unless the crossflow velocity component v within 
the boundary layer exceeds the external value.   Laminar solutions (Reference 11) show 
that velocity overshoots (v/ve > 1) do not occur for cold-wall zero-Mach-number flow, 
hence a correction factor of the following form is suggested: 

ET o      (Ö*/0)T 

IT"= ^T= constant (27) 
L, o L 

However, an inconsistency is noted in that Ej 0 should be unity when Ej^ 0 is unity, 
since this condition implies that no profile distortion occurs due to crossflow pressure 
gradients (i.e., v/ve = u/ue).   This inconsistency is avoided by adopting the following 
expression: 

E        - 1 

E   '    . 1 " 0.77 (28) 
L,o 

The constant .77 was selected primarily on the basis of experimental heating rates on 
swept cylinders. 

In Equation (28),   EL 0 is just Ej^ evaluated for Mach number equal to zero.   For 
Mach number zero.  Equation (A-58) reduces to: 

1 
i = - (i    CT + i   ) (29) 
m,c,o      2    e, SL      w v    ' 



Assuming that F« c = 1.0, and using Kquations (28) and (A-49), 

K  -1+-55 (Vr777^-i)(2i   )expK 
T,o y Z,c        /^      c.o/ 

where 

and 

2        =  (ZT)        /(ZT) 
c,o m,o e, SL 

(30) 

exp K = 0 when N < . 05 and . 99 < N < 1. 01, 

exp K = - . 194 exp [- - N^N'-l))   when . 05 < NT < . 99, 
o 

exp K = . 194 exp (- - (N'-l)]  when N' > 1.01. and N = (x/rf) (9rf/ax). 

The effect of Mach number on Fj was determined from observation of empirical 
trends in swept cylinder stagnation-lino turbulent heat-transfer data, as: 

T.o 'L, o, 

The final expression for Ej now becomes: 

E    =l+.55    (71+ F_ -l)(22       i 
T ^ 2,c,o      /'     c,o/ 

\exp K 

(31) 

1+.718    (v/l+Fz;tC-l)(22c) 
exp K 

1+.718    (/r+ F_ -l)(22       ) 
* 2,c,o      f \     c,o/ 

exp K 
(32) 

where the sign on the exponents is plus when  9(rf)/9x is positive, and negative 
when  9(rf)/9x is negative.   Although the analysis leading to Equation (32) is based 
on order~of-magnitude approximations, heat transfer estimates obtained using this 
method are shown in Figure 8 to agree reasonably well with test data obtained at the 
stagnation line of a swept cylinder. 
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b.     Evaluation of I 

1)     General Equation for Axisymmetric Bodies 

The streamline divergence parameter f is obtained from a solution of the cross- 
flow momentum equavion for inviscid flow given by: 

9v 9v 8P 

P„u, P v ^e^e  9x      ''e e 9y 9y 

The coordinate system is defined in the sketches shown below: 

(33) 

Differentiating Equation (33) with respect to y,   and noting that at the stagnation 
line v   = 9u /9y=   9pp/9y = 0, then: 

'9v 
4  p u 

2 2 
9 v 9   P 

e e 
e e 3x9y 

(34) 

9y 

For most configurations, pressures are more easily expressed as a function of 
x and p.   Equation (34) is now transformed to (x, 0) coordinates.   The relations for 
this transformation are: 

9L) 1 . 1 9( ) 

9y | x      r ^ 

9( ) |       _  9( ) 
9x   1            9x 

i y 

0 dr 9( ) 
r dx   90 10 

In the transformed system,  Equation (34) becomes: 

Pe/aV
e\

2
+   PeUe 

r   y 90 y            r 

r92v 

9x9 

9v   dr/dx " 
2           e 

p       dP      r 

a2P 
1  e 
2 2 

r     90 

(35) 

(36) 

(37) 

2(! 



Equation (37) cannot be easily solved unless it is assumed that 82ve/9x30 = 0. 
This assumption is clearly valid for yawed cones, and numerical results indicate that 
errors introduced by neglecting this term on yawed ogives are small.   Accordingly, 
Equation (37) is now simplified to: 

where 

8v    dr 
80   dx 

a2P +      
802 

--e 

v = v /u 
e   e 

P = P /p u 2 

e    e e 

=  0 (38) 

The solution to Equation (38) is given by the familiar quadratic equation, 
resulting in: 

8v 
8© 

2 2- 

' 802 
(39) 

The proper sign in Equation (39) is positive, as seen in the special case for the stag- 
nation line of a swept cylinder (8r/8x = 0) for which the positive value of dv/dp   shows 
diverging streamlines.   Thus: 

f,-^-'2^* 
It is seen from Equation (39) that when 82P/802 = 0, then 8v/80 = 8r/8x. 

Thus,   8v/80   reflects the streamline divergence due to body geometry as well as 
crossflow pressure gradients.   This result appears to be inconsistent with Equation 
(A-10), which shows that v includes only crossflow effects.   The reason for this 
apparent contradiction is that in the analysis shown above,  v is defined as the velocity 
component normal to lines of constant y,   but in Appendix A,   v is the component 
normal to lines of constant 0.   With the terminology used in this section: 

1 8r +  1 8f 
r 8x      f 8x 

1 8y 
r 80 

or, 

where 

sin T) -   8r/9x 

1 8f 
f 8x 2r 

sm T) + 
2- 

802 
(40) 



2)     Evaluation of a2P/a0: 

Near the stagnation line the pressure variation with 0 is defined by: 

2 
sin  6 

T.SL    .  2 
sin 6 

(41) 

SL 

where 6  is the angle of the surfac ? with respect to the free-stream flow.   For an 
axisvmmetric body: 

sin 6 = coso! sinrj + sin a cos JJ cos p 

Using Equations (43) and (42), it is easily shown that: 

/      P„\ 

(42) 

sin a cos T] 
sin (a -'■ T)) 

1 - (43) 

Methods for evaluating P for a few simple geometries are presented in Section VIII. 

3.     SPECIAL CASES 

a.     Swept Cylinder Stagnation Line 

For the stagnation line of swept cylinders dr/dx = 0, thus only crossflow effects 
need be considered.    For this case,   Equation (40) reduces to: 

1 8f 
f 9x 

i a^p 
r 902 

2-        2 
9  P/90    is found from Equation (43).   Then, 

(44) 

f = exn 

9_ 
x 9 P 
r  902 

(45) 

2,s 



For this case PJ-^^Q can normally be considered constant, and Jj is seen to be 
unity {/Js = 0).   Equation (8) now simplifies to: 

eq;T E,   ■'n 

x     JE 
f4    dx 

.4     T 

F        2 — 
5    T a"? 
4    r ao2 

(46) 

For very large values of x (e. g., infinite cylinder),  Equation (46) becomes: 

1 
eq.T F        2 — 

4"r  90
2 

(47) 

b.    Yawed Cone Stagnation Line 

The flow along the stagnatic ■" line of a yawed cone differs from that on the swept 
cylinder only in that: 

dr 
dx 

sin TJ 

where TJ is the cone half-angle (degrees).   For this case,  Equation (40) becomes: 

J.ctf  _  J_ 
f dx     "2x 1 +    / 1 - 

d2P 
\/ * 2 2 

sin TJ  d0 

A solution for f is given by: 

i  = ex 

(48) 

1 
2 .l4\ 

N - 
/■ 

4 d2P 
2 

sm TJ d02 
(49) 
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Again,   prjiru   can he considered constant, and J-p assumed to be unity.   Hence. 

x,    fdE^N) 
eq, T 

1 /*  1 x 4 ^    r 1 

| (1     ETN)    4 
dx 

(50) 
1- T(l -ETN) 

c.    Delta Wing Centerline 

Three-dimensional effects along the wing centerline of delta wings at angles of 
attack were estimated using a nethod presented in References 2 and 4.   This method 
is based on numerical solutions by the method of Kennet (Reference 12) and wedge 
theory.   The method of Reference 12 is valid only at high angles of attack where the 
shock wave is detached from the leading edges, while wedge theory is applicable only 
at low angles of attack.   The method of Reference 2 uses the results of Kennet and 
wedge theory to provide a means of making estimates at intermediate angles of attack. 

Near the wing centerline it was found that the edge streamlines could be 
expressed by: 

A ex X (51) 

A correlation for n reported in Reference 2 is given by: 

where 

M 
n ■= (1 - 0**/j3) N 

n 

CL,M2-i 
n 

-1 
O** = tan 

/?= OO" -A 

i/n 
y-1 ™ 2 

M 

(52) 

and "1/      sin"      \ M   = M    sin    tan  
n "o \cos a cos A' 

N      is presented as a function of <p**/ß and sweep angle A   in Figure 9. 
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In estimating three-dimensional flow effects on heating it is again necessary to 
separate the influence of geometry and crossflow pressure gradients.   !n this case r 
can vary with x even though no body curvature exists.   This variation is caused by 
shock wave curvature, and cannot be easily estimated.   However, it can be shown 
from the spanwise momentum equation that crossflow pressure gradients will cause 
streamline curvature.   Hence, it is concluded that when the streaml nes are straight 
the influence of crossflow pressure gradients can be neglected (df/dx = 0).   This con- 
dition is satisfied when n is either zero (two-dimensional flow) or unity (conical flow). 
The following relationships were found to satisfy these two conditions. 

rocx 
n(2-n) 

n < 1 

fax 
n(n-l) 

rocx 

f OCX 
n-1 

n > 1 (53) 
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SFCTION VI 

XONISOTHERM AL WALL EFFECTS 

Nearly al) methods for estimating turbulent heating rates are applicable only to 
isothermal surfaces.   However, in practice, sizeable wall temperature gradients can 
exist because of variations in local heating rates, surface emissivities, and the 
presence of internal heat sinks (e.g., cryogenics).   In evaluating these effects it is 
convenient to consider separately the influence of variations of temperature level and 
that of temperature gradients. 

Boundary layer growth is influenced by local wall temperature.   Consequently, 
the boundary layer thickness, and therefore, the local heat transfer coefficient, is 
dependent on the wall temperature at all upstream locations.   The influence of up- 
stream variations in wall temperature are reflected through the   PrMr terms in the 
equivalent distances defined by Equations (8) and (9).   However, these effects on heat 
transfer rates are usually much smaller than the effects of the corresponding thermal 
gradients. 

The following paragraphs describe a method presented in Reference 1 for esti- 
mating effects of thermal gradients.   In this method the influence of thermal gradients 
on heat transfer rates is accounted for by introducing an effective thermal potential 
term *,   where: 

q=  H(i aw - i w. o *) (54) 

The subscript o denotes that the wall enthalpy is evaluated at x = 0.   The method 
for evaluating $ is essentially a modification of a method proposed by Seban and 
described in Reference 13.     The approximation of $j suggested by Seban is: 

* 
T,x=x1 r di 

w 
dx 

1 - x9/10 
■l/lO 

dx (55) 

where 

x = x/x 
1 

The derivation presented in Reference 13 is based on wall temperatures instead of 
enthalpies. 



In spite of its innocuous appearance.  Equation (55) cannot be easily integrated. 
Even numerical integration is difficult because of the singularity occurring when 
x = x,.   An alternate formulation is presented in Reference 14 that permits an easier 
numerical solution as follows: 

where 

x.   di 
_9/10 

-1/10 .x   di 

/ 
s= /   (i-a/xj) 

dx 

9/10 

Jn      dx    dx 
dx 

-1/10 
d(£/x1) 

(56) 

(57) 

where   f is a dummy variable in x. 

Solutions tu Equation (57) are presented in tabular form in Reference 14.   If iw 

is continuous, the integral in Equation (56) can be obtained numerically using: 

x,   di 
* ri^w ds 
T.x^xj      JQ        dx    dx 

dx = x. 
n i    . - i     . . 
y«   w, l      w,i-l 

dx i=n j",    x. - x. 
i-1 

S. - S,  , 
i       i-l 

(58) 

The solution of Equation (58) is still tedious, since the numerical integration 
from x ■= 0 must be repeated at each station in x.   The computation? can be signifi- 
ca.itly reduced by using the following approximation: 

s - s. ^_ X - x' 
-■ll 

1 - s9/10 
1 1-1 1 i i 

•1/10 
(59) 

where 

Xi " 3 (Xi " W 

Thi? method has been incorporated into the PrMr program (Volume III). Program 
results are snown in Figur 10 to agree well with experimental data reported in Refer- 
ence 13.   Comparisons between results from Equations (57) and (59) are given below: 

(S. - S. 
i       i- -l^i "Vi* 

  — Refere'ce 13 
X. 

1 Vi Equation (57) Equation (59) 

.15 0 1.013 1.015 

.3 0 1.024 1,030 

.3 .15 1.033 1.038 

. r,5 .5 1. 114 1. 117 

1 .7 1.297 1.306 
1 .85 1.400 1.411 
1 .97 1.665 1. 688 
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The foregoing analysis is restricted to flat plate flows.   The influence of pressure 
gradients and three-dimensional effects are included by replacing the dimensionless 
strearmvise distance "x with an equivalent distance Sj,,   where 

(rfV^dx 
/ 

CiTdx 

ST=   —I 
(60) 

/     We^^4^ f    GTdx 
o •/o 

The l»asis for this definition of S^ rests primarily on a similar analysis for laminar 
flows presented in Reference 1. 

The set of equations for estimating the effects of wall temperature gradients is 
given in finite difference form by: 

q^ = H   fi      - i        + 4»  ) 4T        Tv aw      w, o       T' 
(61) 

where 
n 

*T " Z) (Hv, i " V i-l) 1      i=l 
1 - di)9710 •1/9 

S.' - 1/3(8' - S.' ,) 
i i       i-l 

and 

s: -J 
g^-v^-v 
E^-V^j-V 

:!(! 



SECTION VII 

NOSE BLUNTNESS EFFECTS 

The flow field surrounding a vehicle in hypersonic flight is dependent on the nose 
geometry.   The presence of a blunt nose, for example, tends to increase static tem- 
perature and decrease velocity at the boundary layer edge.   This effect, which can 
extend many diameters downstream of the nose, can ciuse a substantial decrease 
(30 to 40 percent) in aerodynamic heating rates. 

Nose bluntness effects are dependent on the vehicle configuration. Mach number, 
Reynolds number, wall cooling, and total enthalpy (real gas effects).   Two limiting 
cases are immediately recognized.   A good estimate of the upper bound on heating can 
be obtained by assuming sharp body values for local velocity and enthalpy.   Conversely, 
the lower limit is obtained by assuming all of the fluid in the boundary layer has passed 
through a normal shock in computing local flow properties.   The flow conditions at the 
boundary layer edge are then obtained assuming an isentropic expansion from the stag- 
nation to the local pressure.   This approach is restricted to equilibrium or frozen flows. 

An approximate method for interpolating between the upper and lower heating limits 
was developed during the present study.   The derivation of this method is presented in 
this section, and data-theory comparisons are presented in Volume II of this report. 

1.     SHOCK ANGLE EFFECTS ON STANTON NUMBER 

The first step in the present analysis was to determine the influence of the shock 
angle  e on the Stanton number Ngt.   Calculations of Ng^ were made using the PrPr 

method for edge velocities and static enthalpies corresponding to several shock angles. 
Local static pressures were assumed to be unaffected by bluntness.    The local flow 
properties were calculated assuming an isentropic expansion behind the shock wave. 
The results, shown in Figure 11,  indicate that: 

. 2 
NSt^NSt.NS + J^(NSt.Sh-NSt,NS) (62) 

sin  fSh 

The subscript NS denotes that the evaluation is made for a normal shock (c  = 0) and 
Sh denotes that the evaluation is for a sharp body with an attached shock. 
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2.     MASS CONSERVATION ANALYSIS 

The shock strength applying to the boundary layer at any given location was deter- 
mined using the simple streamtube concept sketched below: 

P H ooroo 

"   Stream-   , 
intersection h   tube      /// 

I     JL. Uli 
Stagnation- 
point 

The mass flow rate,   m,   in the streamtube entering the shock layer is: 

m = ö P  u   h ^ Shock      2   oo   oo 
(63) 

Similarly, the mass flow rate in the boundary layer at S = S,  is: 

-Ö 

"BL,^^ 

ro 
J      pudy =   p u   (6 - Ö*)A (64) 

The angle <//  determines the width of the streamtube at the shock, and A is the cor- 
responding streamtube width at the boundary layer edge.   Since the mass flow must 
be constant in the streamtube: 

i 2 
-  p u   h  « =   p u   ( 6 - Ö*)A 2    <n  oo e e (65) 

The relationship between the streamtube height h and the shock angle   e is illustrated 
in the sketch on the following page. 

Downstream of the matching point,  c   is assumed to be uninfluenced by bluntness. 
Upstream, the shock wave radius of curvature R    is assumed to be constant, and is 
expressed by 

o 
R   a   R 

m 
n \ 90   - ' m (66) 

Hence, 

h =  H' sin f  a  R   sin c(—-^ ?— 
n \ 00   -  ' m (67) 

,')9 



Substituting Equation (67) into Equation (65) and solving for sin e  gives 

(■f) 
.2 «Ve  («-«•j/90" sin   e a ' ' 

£     \2 m \   /A 
p u 

R m 
(68) 

Methods for obtaining the streamtube width A are presented in Section V.   On the 
hemisphere, the flow is assumed to be axisymmetric.   At the tangent point TP of the 
hemisphere-wing centerline 

A^,„  = ^ R   cos  0 
TP n m 

(69) 

The angle delta is the angle of the oody surface with respect to the free stream 
flow.   Using Equation (69),  Equation (68) becomes 

sin   e = C 
B p 

m 
m Ni cos ,m (70) 

3.     EVALUATION OF (6 - 0*) 

If pressure gradient effects are neglected, the thickness parameter (6 -6*) is 
easily related to the momentum thickness 0 .    Following the practice of Beckwith and 

K) 



Gallagher (Reference 14), it is assumed that the velocity and enthalpy profiles can 
be related to the corresponding incompressible profiles by the following transformation: 

= / 
Y =   /     (P/P )dy 

6= Y 
y=ö 

(71) 

The velocity ratio u/u    is then considered to be a function only of Y/6,   and indepen- 
dent of wall cooling and Mach nui '.ber.   Thus: 

6 - 6* . 
r PU   dy A^ 

0 
n p" /i-u\dv f1"    /l-Md^Y/M 

= (^) 
(72) 

inc 

If the influence of pressure gradients is neglected, then u/ue « (Y/ö) '  , which gives: 

6-6* 
e =   9.0 (73) 

The momentum thickness  6 can be obtained either by using the prHr progran 
described in Volume HI or from Equation (18). 

4.  EVALUATION OF BLUNT BODY CONSTANT CB 

Using Equations (70) and (73),   Equation (62) becomes: 

C 
B 

N    = N    + , 
St       St     \    .  2 

.sin  e m 

P u 
e e 

P u   , 

fCOE 0 m ^90° m' 
R 

TP/ 'rn 
N - N 

St, Sh       St, NS 

(7 

e      is assumed to correspond to the equivalent attached shock angle.    Bluntness 
affects   pa,   u^,    Ö,   and A.   However, including this effect would require a tedious 
iterative treatment.    Excellent agreement with data was obtained, however, when 
these parameters were computed for an attached shock along with the approximation 
that CB= 7. 
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SECTION VIII 

APPLICATIONS 

Equations and correlations defining the PrMr method for computing turbulent 
heating rates are presented in preceding sections and in Appendix A of this volume. 
In this section, applications of this method in estimating turbulent heating on a blunt 
delta wing configuration during orbital reentry are described.   Three gas models are 
used in order to illustrate real-gas effects.   The application of the PrMr method in 
extrapolating experimental heat transfer data obtained from ground facilities to flight 
conditions is also discussed. 

1.     GEOMETRY AND TRAJECTORY 

The configuration selected for this analysis is a delta wing with a hemispherical 
nose cap and cylindrical leading edges.   The dimensions are given in the sketch shown 
below. 

The flight path selected is 20, 000 feet below the equilibrium glide trajectory for a 
W/SCL of 150.   This path represents a severe reentry heating trajectory.   The 
15-degree angle of attack approximates the condition for maximum lift to drag ratio 
for this geometry. 

2.     FLOW FIELD AND GAS PROPERTIES 

The following information regarding flow field and gas properties is required in 
order to estimate turbulent heat transfer coefficients using the  pr^r method: 

1.     surface pressure and streamwise pressure gradient 

2. velocity,   u ,   and enthalpy,   i ,   at the boundary layer edge 

3. temperature,   T,,,,   or enthalpy,   iw,   at the wall 



4. streamline divergence parameters r and f 

5. diffusion parameter j£ 

6. viscosity,  \i,   partial Prandtl number,   crr,  and compressibility factor- 
temperature product, ZT. 

The flow field parameters (items 1 through 4) must be specified at all points 
along a streamline.   The gas properties (items 5 and 6) are usually specified as a 
function of pressure and enthalpy. 

a.    Surface Pressures 

Pressures along the delta-wing lower surface are obtained using methods pre- 
sented in Reference 2.   The expression for sharp delta wing pressure coefficients is: 

Cp = 2 (sin a) | 
sin(Q'+ |) 

(75) 
cos I 

The shock standoff angle  4 is obtained using: 

| ^'»(t)te)-566^-' <76' 
Equation (76) is an empirical fit to numerical flow field solutions obtained on a sharp 
delta wing using the method of Reference 12.   Results from this method are in good 
agreement with those from Reference 4. 

The influence of nose bluntness is estimated using the following equation suggested 
by van Hise (Reference 15). 

c   . C = :i? ^ - ^2- ,771 
I P       PSharp       y   W     uj '   ' 

The drag coefficient for the hemisphere (CD n) is assumed to be 0. 8, which is 
obtained by integrating the hemisphere pressures given in Reference 4. 

Pressures on the leading edge are computed assuming the shock wave is parallel 
to the surface.   For this case, the stagnation line pressure is equal to the total pres- 
sure based on the flow component normal to the leading edge.   Except very near the 
nose, real-gas effects on pressures were found to be small at the flight conditions 
considered, and are neglected in this analysis. 
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b. Edge Velocities 

The velocities at the boundary lavcr edge for the sharp delta wing case are com- 
puted using Equation (^8) which v: an empirical expression presented in Reference 4. 

u 2 
e ö 

00 

Where a is in degrees. 

The velocities for the normal shock calculations are computed assuming an isen- 
tropic expansion from the stagnation point.   Bluntness effects on heat transfer are 
estimated from the sliarp and normal shock results using Equation (74). 

Consistent with the parallel shock assumption, stagnation line velocities are 
obtained by: 

u 
— = cos A ., (79) 
u eff 00 

For an unyawed condition, the effective sweep angle (Aeff) is expressed by; 

. . -1 /sinA\ .om A      = sin       —— (80) 
eff \sina/ 

c. Wall Temperatures 

The wall temperatures are assumed to be constant over the vehicle at any given 
instant of time. These temperatures are given as a function of velocity and altitude 
in the following table. 

ALT, ft Tw,  "R 

187,000 3040 

171,500 2960 

160,500 2840 

149,000 2660 

137,500 2400 

125,000 2100 

These temperatures are representative of equilibrium values for a radiation cooled 
surface. 
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d. Streamline Divergence Parameters 

The streamline divergence paramours r and f are computed using Equations 
(52) and (53) presented in Section V. 

e. Gas M'del 

Most of the heat transfer calculations presented in this section are for air in 
chemical equilibrium for an ideal gas.   However, computations for a fro.^ro flow are 
shown at the enthalpy for peak turbulent heating (V,,:, = 18, 700 fps).   Since .equilibrium 
flow implies infinite reaction rates and frozen flow zero reactions, differerees in 
heating rates for these conditions are indicative of the maximum influence of reaction 
rates on turbulent heating. 

1) Chemical Equilibrium 

The turbulent heat transfer estimates for equilibrium flows were obtained using 
the prMr program described in Volume IIJ.   The diffusion parameter jt is computed 
from Equation (21), and the stagnation reference viscosity p0 from Equation (19). 
Other thermodynamic and transport properties are essentially the same as those pre- 
sented in Reference 16. 

2) Frozen Flow 

For this case, the gas is assumed to be frozen at the stagnation point composition. 
This composition and the corresponding thermodynamic and transport properties are 
computed using the equations presented in Reference 16.   The stagnation point gas 
composition was obtained from Reference 17.   The flow properties on the wing sur- 
face are based on an isentropic expansion. 

For the range of temperatures considered, the vibrational energy level of the 
diatomic molecules can be considered to be proportional to the translationai and 
rotational energy levels.   This approximation greatly simplifies computations since 
the specific heats Cp and cv are then constant with temperature. 

By definition of frozen flow, no chemical recombination of atoms occurs.   Conse- 
quently, the energy absorbed in dissociation must be considered unavailable in com- 
puting the total enthalpy of the flow.   For the present case, the total enthalpy of the 
flow at the boundary layer edge is reduced by dissociation to about 47 pert ent of the 
free-stream value at V^ = 18, 700 fps.   The resulting decrease in adiabatic wall 
enthalpy causes a substantial reduction in heating rates.   The frozen flow adiabatic 
wall enthalpy is given by: 

i      =: rl  + H - r)i   = .47rl   + (1 - r)i (81) 
aw e e ^ e y    ' 



A second frozen-flow heat-transfer calculation was made that differs from that 
described previously only in that the adiabatic wall enthalpy is based on the total 
enthalpy of the free-stream flow as follows: 

i      = rl   + (1- r)i (82) 
aw 00 e 

The second approach is presented to furnish an estimate of the influence of sudden 
recombination of atoms or. heating.   A noncatalytic wall is assumed in all cases. 

3)    Ideal Gas 

Since the gas composition is assumed to be frozen in the free-stream state, the 
ideal gas case is a special type of frozen flow.   Viscosities are computed using 
Sutherland's law.   The usual thermodynamic parameters for low temperature air 
given below were assumed. 

y = 1.4 

Cp = 6006 ft2/sec2-0R 

R = 1716 ft2/sec2-0R 

Z - 1.0 

3.     BLUNTNESS ANTD REAL GAS EFFECTS 

Bluntness effects on the Stanton number along the wing centerline are illustrated 
in Figure 12.   At the highest velocity considered, the influence of bluntness is seen to 
extend only about 2 diameters downstream of the nose cap.   At lower velocities and 
altitudes, the boundary layer displacement thickness is smaller; consequently, blunt- 
ness effects extend much further downstream.   The sharp body estimates in computing 
the blunt body heating rates are based on local velocities and enthalpies for a sharp 
wiug, but are adjusted to account for bluntness effects on local pressure. 

Real gas effects are illustrated in Figure 13 which shows Stanton numbers for 
equilibrium, frozen, and ideal gas flows, all based on normal-shock theory (see 
Section VI).   The frozen flow estimates are seen to be substantially lower than the 
equilibrium values, even when the adiabatic wall enthalpy is based on the free-stream 
total enthalpy. 

The comparisons shown In Figure 13 are unrealistic in that the frozen flow com- 
position applies only to the flow originating at the stagnation point.   A more meaningful 
comparison is given in Figure 14, which shows the blunt body estimates obtained using 
Equation (74),   The frozen flow composition is assumed in computing the normal-shock 
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values, and equilibrium flow is used in computing the sharp wing heating rates.   It is 
seen that for this case reaction rates influence heating only near the nose cap.   The 
ideal-gas Stanton numbers are about 40 percent lower than the corresponding equilib- 
rium values. 

4.     EXTRAPOLATION TO FLIGHT 

At this time no test facility except hypersonic gun ranges, is capable of duplicating 
hypersonic flight conditions for speeds greater than about 10, 000 feet per second. 
Except for shock tubes, the total enthalpy is less than high-speed flight.   Shock tubes 
are capable of simulating enthalpy but are limited to low Mach numbers.   For this 
reason, empirical methods alone cannot be relied upon to provide accurate heat trans- 
fer predictions for hypersonic flight.   However, analytical methods alone are not ade- 
quate for predicting heating on realistic aerodynamic configurations unless supported 
by test data for that specific configuration.   It therefore becomes necessary to inter- 
pret test data obtained from ground facilities in sucli a way that these data can be 
reflected in predictions for flight.   One approach for making this interpretation is to 
extrapolate these data to flight conditions using analytical methods.   In performing 
this extrapolation, it is convenient, whenever possible, to normalize Stanton numbers 
with respect to some reference condition such that the normalized Stanton numbers 
are not greatly dependent on flow conditions.   The reference condition selected for 
this analysis is the stagnation line of an infinite cylinder of one foot diameter and a 
sweep angle of 60 degrees.   The reference Stanton numbers for the flight path being 
considered is presented in Figure 15 for both equilibrium and ideal-gas flows. 

The Stanton number ratios at the wing centerline are shown in Figure 16.   Similar 
comparisons for the leading edge stagnation line and the lower-surface leading-edge 
tangent lines are presented in Figure 17.   Extrapolation factors for two typical wind- 
tunnel test conditions are shown in Figure 18.   The good simulation of Stanton number 
ratios for the stagnation line is not surprising since the reference Stanton number is 
also for the stagnation line but at a different sweep angle.   However, significant differ- 
ences in Stanton numbei ratios are noted for the delta wing centerline, particularly for 
Arnold center tunnel B.   These deviations are due to differences in local Mach number, 
enthalpy level, and the ratio of the wall enthalpy to the total enthalpy. 
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SECTION K 

CONCLUDING REMARKS 

The Prnr method for estimating turbulent heating rates is well substantiated by 
experimeatal data obtained on several body shapes and for a wide range of test condi- 
tions. In particular, effects of local Mach number, wall cooling ratio (Ie/iw), three- 
dimensional flow, and streamwise pressure gradients predicted by this method are in 
excellent agreement with experimental trends. Similarly, the method for estimating 
nose bluntness effects described in Section VII, in general, furnishes good agreement 
with available heat transfer data. 

Methods for predicting real-gas effects are not as well established.   The combi- 
nation of high pressures and temperatures required to obtain a highly dissociated 
turbulent flow is difficult to achieve in ground facilities; consequently, very little data 
are available for turbulent flows with significant levels of dissociation and high Mach 
numbers. 

Whenever possible, it is recommended that the prPr computer program described 
in Volume III be used for calculating convective heat transfer rates.   However, if com- 
putations must be made manually, the simplified equations presented in Appendix B are 
recommended.   In most cases, the simplified equations provide heat transfer estimates 
within a few percent of the complete equations.   Handbook methods presented in Refer- 
ence 5 will also provide heating estimates that are in good agreement with the Pr^r 

computer program except for delta wing surfaces.   Significant discrepancies in heating 
estimates on sharp delta wings can occur because of differences in methods of deter- 
mining three-dimensional parameters. 

The purpose of developing the turbulent nonsimilar method was to furnish a basis 
for evaluating the profile parameters appearing in the equations and to substantiate 
the method presented in Section VI for estimating effects of wall temperature gradients. 
Unfortunately, it was impossible to complete these studies during the present investi- 
gation.   Numerical instabilities often developed when pressure gradients were imposed 
on the flow.   Although measures were usually found for eliminating these instabilities, 
they resulted in substantial increases in computing time. 

In spite of these difficulties, the turbulent nonsimilar method is believed to repre- 
sent a new and promising approach in treating turbulent flows.   This approach offers 
several advantages over previous methods.   Empirical correlations are used only in 
defining Reynolds stresses, and no assumptions regarding velocity profiles or shear 
distributions are required.   Since the flow equations are solved in partial differential 
form, no coordinate transformations are required.   Such transformations usually 
impose restrictions on boundai'y conditions and flow similarity   Skin-friction coeffi- 
cients and heat-transfer rates obtained using this method are in good agreement with 
experimental data over a wide ran^e of test conditions. 
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APPENDIX A 

DERIVATION OF THE   p fx    METHOD Kr  r 

The derivation of the  p  n   equations presented in this appendix is based on a 
solution of the boundary layer energy integral equation.   A similar derivation based 
on a solution of the momentum integral equation is presented in Appendix B of 
Ri Terence 2.   The present derivation is given in the following parts: 

1. Derivation of a general form of the boundary layer energy integral equation. 

2. Transformation and solution of the energy integral equation. 

3. Solution of the momentum Integral equation. 

4. Evaluation of laminar boundary layer parameters. 

5. Combined laminar and turbulent method. 

A simplified version for making hand calculations is presented in Appendix B and 
the I3M 7094 digital computer program using the equations presented in this appendix 
is described in Volume HI. 

The correlations given in part 4 of this appendix are the same as those presented 
in Reference 1, but differ from those of Reference 2.   However, differences in heating 
rates computed using the present correlations and those of Reference 2 are small. 

1.     DERIVATION OF THE ENERGY INTEGRAL EQUATION 

This derivation is restricted to the vicinity of a plane of symmetry as well as by 
the usual boundary layer assumptions. The mass and energy conservation equations 
for boundary layer flows are given by Equations (A-l) and (A-2), respectively; 

I   apug+ MV+.9Pvv = 0 A 
g     ax 8y       dz 

dl dl dl     aq     a(UT) /A  ov 



The corr isponding control volume is shown in the following sketch: 

z.w 

The length elements in x and z are unity.   However, the length element in y is 
determined by the function Ay = g(x), which remains arbitrary (subject to the restric- 
tion that dg/dx remains finite).    Later it will be seen that in most cases the most 
convenient choice of g is dependent on the geometry of the body under consideration. 
The surface y = 0 is by definition a line of symmetry, hence v. but not necessarily 
8v/ay , is zero when y - 0.   Also, it should be noted that for turbulent flows the flow 
parameters appearing in Equations (A-l) and (A-2) are averaged with respect to time. 
For turbulent flows,  T  represents the effective shear stress including the Reynolds 
stress, and q represents a corresponding effective heat flux. 

The velocity component normal to the body,  w , is found by integrating 
Equation (A-l) with respect to z: 

w = \r 1  9pug 
g    9x 

9Pv 

ay 
dz 

p w 
vv  w 

(A-3) 
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Using Equation (A-3). and assuming that vv ; = 0, Equation (A-2) can be written: 

31 91      31 
r   3x    K   9y    3z / 

1  3pug+  3pv 
g    3x        3y 

dz = 
3q .   3(UT) 

3z ''      3z 
(A-4) 

I.    . Jer to obtain the boundai> myev momentum integral. Equation (A-4) is integrated 
from the wall to some arbitrary location (z = h) outside of the boundary layer. 
Neglecting external vorticity, q   . - T   ^ = 0' the momentum integral becomes: 

/ 

31 31 
pu --+ pv Q K   3x 3y 

dz 
Jo   dzJo 

1   apug+  3(pv) 
g    3x 3y 

dzdz = -q    „ (A-5) 
z=0 

Integrating the second term by parts and rearranging, Equation (A-5) can be 
expressed: 

V0 ' Villr |   We - ' dz + i /   "^e " *> dz (A-6) 

Since this analysis is restricted to lines of symmetry, it can be easily shown that: 

_3^ 

3y 

-e 
o, 

ay 
= o 

and 

9(1      - i   ) 
aw      w 

ay 
= o 

In the present analysis it is further assumed that: 

3(i      " i   ) aw      w 
3x 

- 0 

The influence of wall temperature gradients on heat transfer is treated separately in 
Section Vi. 
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Thus. Efjiiation (A-6) can now bo expressed in terms of the heat transfer coefficient, 
H,   as follows: 

\ II 
pu(i     -i)      pu       9x./.      p 
e e   aw    w'       e e 0       c ' J0      PeUe 

r i - e 
-I   1 

1 i 
L aw w J 

- dz 

e e 

apu g     ^h 
e e 
ax / 

pu 
pu 
e e 

I - 
e 

-I 

i 
aw 

- i 
w 

dz 

9ve/ay   rl 

U
e   ' ^0     PeVe 

pv r i - e 
•I   ] 

i L aw ■i    1 WJ 

dz (A-7) 

Now, introducing the boundary layer thickness parameters, energy thickness: 

Q •/   "" j 
0      re e l 

I -I 1 

I     -1 
. aw    w J 

and the crossflow energy thickness ratio: 

c-i rh pv 
r   I -I   1 

e 

^•'o     Ve i     - i 
L aw    w j 

dz 

dz 

(A-8) 

Equation (A-7) now reduces to: 

H 

P u 
e e 

ax u 
i   e 

au 
e      1 

ax    p 
9Pe     lag    -   8Ve/ayl 
ax     g 8x u 

(A-9) 

Note that e and ave/ay are determined by the definition of g,  which is still 
arbitrary.    Since results obtained from Equation (A-9) are independent of this defini- 
tion, the selection is made solely on the basis of convenience in evaluating the 
appropriate flow parameters. 

It is seen from Equation (A-8) that an exact evaluation of  e requires a solution of 
both the streamwise and crossflow velocity profiles.    Such solutions are available only 
for laminar flow over simple shapes.   It is therefore desirable to define g in such a 
way that e   and ave/ay reflect only the influence of crossflow pressure gradients. 
For this case g reflects only the streamline divergence due to body geometry.    In the 
absence of a. more exact approach,  g can be assumed to be proportional to the body 
radiuisi of curvature,   r.  normal to the streamline.   In order to be consistent with the 
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most common symbology,  r is used in place of g in the following analysis.   Also, the 
streamline divergence due to crossflow pressure gradients is denoted by f,  where f 
is defined by: 

1 8f      1  aVe 
f 3x    u     8y 

(A-10) 

Using Equation (A-10), Equation (A-9) can now be expressed as: 

rf 

2.     TRANSFORMATION AND SOLUTION OF THE ENERGY INTEGRAL EQUATION 

a.    Transformation 

In order to obtain a more useful form of the energy equation, a modified 
Stewartson transformation suggested by Mager (Reference 3) is adopted in which: 

= / 

,x     Pr^r 
J0 Wo 

Y=y 

.z 
Z = F   /   -^- dz 

'O    Po / 

v = V 

F 

T= I 

F2 

i 
aw 

i 
aw 

F2 

i    = 
i 
w 

w 
F2 

u=ir ^.="0- (A-^) 
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The stagnation values of density and viscosity, p0 and n0, are required to be 
constant, and F is an unspecified function of X only.   With these definitions, the 
energy thickness and heat transfer coefficient in the transformed coordinate system 
are, respectively: 

/h I -I p 

p e   aw    w o 

_    1   ^o 
H = -- H (A-13) 

F  p   Ll 
r  r 

t, r, and f are unchanged by the transformation.   The transformed energy equation 
now becomes: 

^AkV^) <A-14' rf 

b.    Solution of the Transformed Integral Equation 

In Appendix B of Reference 2, the transformed momentum integral equation was 
solved by assuming a transformed Blasius shear law given below: 

T C w m 

pu2   (p U®/M )1/m 
o  e      v  o e       o 

(A-15) 

The exponent m is unity for laminar flows, and approximately 4 for turbulent 
boundary layers.   However, by leaving m unspecified the following analysis is valid 
for both types of flow. 

Assuming unit Prandtl number and, neglecting the effects of streamwise pressure 
gradients, the enthalpy can be related to velocity by the well-known Crocoo energy 
relationship given hy. 

I-i 
w u 

I -i 
e    w 

u 
e 
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For this case it is easily demonstrated that the following expression relating 
heat transfer coefficient to energy thickness corresponds exactly to Equation (A-15): 

H= C 
P u ro  e 

11 /« IT ?;/    v1/"1 
(p U Q/^i ) ro  e     ^o7 

(;\-16) 

The form of Equation (A-16) is retained in this analysis, but the constant Cm is 
renlaced by CQ.   This substitution is necessary to account for differences in the 
constant resulting from errors introduced by using the Crocco approximation. 

Using Equation (A-16), but with the new constant, Equation (A-14) now becomes: 

r  <nv *(m-1)/m     l/mA-l/m_   1     3 VW ^o " 
rf 

Equation (A-17) can be solved for (P0U Q) by multiplying both sides by 

J_ mfl 

(P U Q)m (rfe")    m , 
o e 

rearranging, and integrating both sides with respect to X.    Using the boundary 
condition that either Ue = 0 or (£=0 at X = 0, the solution is given by: 

(P0UeQ) 
1/m 

/■X£^cnPUM  l/m(rf5) J0       m     Q o  e  o 
(mfl)/m 

dX 

l/{m+l) 

(rf ) 
(A-18) 

Substituting Equation (A-18) into (A-16): 

H = 
CPU   (rf?)1/m P l/m 

Q  o  ey o 

Jo      m Cn P U  M 
l/m (rfe')(m+1)/mdX 

Q  o  e ro 

l/(mfl) 
(A-19) 
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In the untranstormed physical plane, Equation (A-19) is: 

H = 
C   Pjxu  , <1-m)/m(rfV

/ra 

Q  r  r ero v     ' 

— C^ P VM {ri^y      "     dx 
m     Q r  r e 

l/(mfl) 
(A-20) 

Neither   P0 nor F appear in this equation, and their definitions are therefore 
immaterial.   It was stated earlier that n0 was independent of x.   The preceding 
solution is valid only if m is constant with x.   If CQ is also assumed to be indepen- 
dent of x, Equation (A-20) reduces to: 

H = 
Wl/ 

l/(nn-!) 
L-m 

m/{mfl)      .1+ni W(nw-l) 
<
C

Q) ^O)       ^r^rV 

. ,e.(nn-l)/m 
P u u (rf ) 
r^r e 

/p u u (rfC) 
r  r e 

e (mfl)/m 
nl/(rm-l) 

dx 

(A-21) 

It is convenient to express CQ and m using the following: 

1 m 1 

/rtM m+1       v^l = c     j 
Wl/ (V CFPJ 

mfl 

where Cpp is; the flat plate value of 

m 
/ m \ nn-i       m+1 
(m+-l/ O 

and J reflects the Influence of streamwise pressure gradients.   Correlations of exact 
laminar boundary layer solutions show that Cpp can be expressed by: 

C^   = . 332 T, 
FP F 

£ 
Pr 

Based on this result, the following expression is assumed to apply to both laminar and 
turbulent flows: 

Wl CQ) 

m 
mfl     C £J 

x 

m 
mfl 

(A-22) 
Pr 
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where Cx is approxi .-nately 0. 332 for laminar flow, and is a constant to be specified 
later for turbulent flow.   Using Equation (A-22),  H can now be expressed in the more 
familiar form shown below: 

F    x 
Pr eq  \      fi 

m 
x m+1 

u x   \ 
' e eq\ 

2  ; 

c JCH   /PHI     x mil 

H = -=A—^ f   r   r: ^1 (A-23) 
o 

where Xpn is an equivalent flat plate length parameter defined by: 

PrMrUe(rf > 
x     =      —^r- —7—   /        r dx (A-24) 

eq    jp,u(rff)(mfl)/m/) ^ 

Equations (A-23) and (A-24) are equivalent to the result reported in Appendix B of 
Reference 2 with one exception.   The exponent ? in Equation (A-24) appears in place 
of the crossflow momentum thickness ratio,  E , in Reference 2, where: 

(A-25) 

Tf the Crocco energy relationship is assumed, it is easily seen that e   and E are 
equal.    Considering that approximate methods must be used in evaluating either €   or 
E , particularly for turbulent flow, it appears reasonable to have the same approxima- 
tions for both parameters.   Accordingly, e   is replaced by E in the following analysis 
is order to make the nomenclature consistent with that of previous publications (e. g. . 
References 1,2, and 3). 

3.     SOLUTION Ot THE MOMENTUM INTEGRAL EQUATION 

The purpose of this derivation is to obtain expressions for momentum thickness 
and skin friction consistent with the heat transfer expression given by Equations 
(A-23) and (A-24). 
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The boundary layer momentum integral is given in Appendix B of Reference 2 by: 

T\v       30    .  /2+&*/e  8Ue     1    3pe    1 ar    E 8f\ /A nB% 

I," \      e ^e / re e 

where 0   is the boundary layer momentum thickness. 

Equation (A-26) can be rearranged into a simple form similar to the energy 
integral expression given by Equation (A-ll), giving: 

•w 
A-l   ,E 9x 

u        rf 
e 

A f
E/i\ u     rf 6] 

3 0 / 
(A-27) 

where A = 2+ ö*/ö. 

Applying the Magei transformation defined by Equation (A-12), Equation (A-27) 
becomes: 

Tw 
U 

e     U 

1 9       /n  TT 
A TTA

-1
    PA 

1    A-l  fE K   (PeJe  F      r^ 
F       rf 

(A-28) 

where 

w 'PoVo\ 

Tw = FZ  \^vj 

and 

-fit-© dZ = F — 0 
Po 

By replacing the left side of Equation (A-28) with the transformed Blasius shear law, 
Equation (A-15), an expression for ®  is obtained in the same way as was Q in part 2 
of this appendix.   The result is: 

m 
X m+l 

f    Htl c   FA-1 p U % 1/m(rfE)  m dX 
yft        mm ^o e     o      v     ' 

mfl 

Fp U rfE 
ro e 

(A-29) 
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In untransformed physical coordinates. the equivalent egression for Ö  is: 

m 

fin*! nw-1 A 
C    p   u u     p 

m     m   r   r e     o 

1-m 
m 

mfl 

(rfE)   m dx 

m+1 

(A-30) 
p u rf 
e e 

The momentum thickness is related to skin friction by the modified Blasius shear 
law given by Equation (A-15).   The untransformed equivalent of Equation (A-15) is 
given by: 

T        P P u w     rr r e 
C 

m 
li       / \ 1/m Ko   fp u e 

' e e 

(A-31) 

Substituting Equation (A-.30) into (A-31) gives: 

1-m                      1 

C   p          P p u (rf^) 
mpo          r  r e 

x                     1-m             A(nn-1)-1        m+1 
1 

nn-l 
/"    m+1 ^          m                     m      , .pv   m   , 
/       C   p          p P u                  (rf^)       dx 

J        m     m o         r r e 

(A-32) 

Assuming that Cm is independent of x , it can be expressed in a form similar to that 
for CQ in Equation (A-22) by the following: 

m+i 
m 

m+1 /   ni  \ .nvt-l „ 
( r (C = C  P I m f 1/ v   m' x 

,m+l 
(A-33) 

the profile parameter Cx is the flat plate value for 

(—) \m+l/ 

m+1 
and    C 

m 
m+1 

m 

and P reflects the influence of streamwise pressure gradients. 
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Using Equation (A-33), Equation (A-^2) can be reduced to a form similar to that 
for H given by Equation {A-23),   The corresponding skin friction oxpression is: 

i_^(N j^l (A-34) 
u S      l   R.r.S' v        ' 

e ec 

where: 

p u u S 
NRrS = -^i±3 (A.35) 

R,r,.S ^ 
o 

and the skin-friction equivalent distance is defined by: 

mfl 

/p p u (rfE)  m dx rr  r e^      ' 
S    = —  (A-36) 
eq mfl v 

Pp p u (rfE) rr  r e       ' 
m 

Using these definitions for Nn      Q and S    , Equation (A-30) simplifies to: 

mfl 

e = ^lc   -^-(N        y^ (A-37) 
m     x p u   v  R.r.S7 v re e 

4.     EVALUATION OF L>  vflNAR BOUNDARY LAYER PARAMETERS 

Exact solutions c   the similarity form of the laminar boundary layer equations 
were used to evaluate the parameters appearing in Equations (A-23), (A-24) and 
(A-32).   This was done in an orderly manner, beginning with two-dimensional 
constant-property constant-pressure flow, and progressing to the most complex con- 
ditions for which exact solutions are available.   The evaluations determined from the 
simpler cases were retained or amplified in analyzing the more complex cases.   Thus, 
the constant Cx for laminar flow is always taken to be 0. 33206. the value given by 
Howarth in Reference 18 for incompressible flat plate flow.   The effects of pressure 
gradients, wall cooling, etc. , are accounted for in other terms of Equations (A-23) 
and (A-32). 
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In some cases, alternate definitions were possible.    For example, the authors of 
Refeicnces 19 and 20 incorporated (in effect) pressure gradients into the term prfji,, 
appearing in Equation (A-2:5)I while in the present formulation such effects appear in 
the heat transfer equivalent distance x   .   The latter definition is to be preferred as 
the former cannot be made consistent with the results of Reference 12, which presents 
solutions for various pressure gradients, but with pn   held constant.   The definitions 
used here were adopted only after an examination of several possible alternatives. 
The criteria for selection were consistency between the results of the various special 
cases, conformity with physical considerations, accuracy, simplicity, and freedom 
from interdependencies. 

a. General Considerations 

As a matter of physical consistency, it is required that if the fluid properties p 
and  n are constant through the boundary layer then the reference values of the fluid 
properties be equal to those constant values.   This principle is extended to constant 
products as well, i. e. , it is required that when in a given numerical calculation 
(e. g. , References 12 and 21) the product of density and viscosity is held constant at 
some base value (usually the wall), then the reference density-viscosity product, 
prfxr ,  must also be equal to that base value.   The functions Fp    and .£ are equal to 
1. 0 when a and Nj^ are equal to 1. 0, and ^ = 1.0 for ideal gases.   Also, in flat 
plate flow the equivalent distance is equal to the physical distance from the leading 
edge. 

b. Tvvo-Dimensional Flat Plate Flow 

The special case of two-dimensional flat plate flow is examined first since the 
effect of fluid property variations within the boundary layer can be examined without 
the additional complexity of streamwise variations.    For the case of constant fluid 
properties, the solutions of Howarth (Reference 18) show that m = 1 and Cx = . 332, 
so that Equation (A-23) becomes: 

H = . 332 -—     (A-38) 

1 
2 

-.:V.l2^-{~~^-] (A-39) 
j"     /P P u   , *■•    /   e  e el 

Pr 

where Equation (A-39) follows from the principles stated in the preceding paragraph. 
For this special case, the only undetermined quantities are the Reynolds analogy 
factors  £ and Fpr.   Note that the reference stagnation viscosity,   n0, no longer 
appears. 
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c. Reynolds Analogy Factors 

Following the practice of Reference 19, for example, the Prandtl number effect 
is correlated in terms of   a, the partial Prandtl number for translation, rotation, and 
vibration.    The Prandtl number effect on Reynolds analogy in flat plate flow, usually 
given as Fp   = (<T)       for constant   a, is somewhat better represented by o" "^5 as 
may be seen in Figure 19. 

For variable Prandtl number there is an uncertainty as to which value should be 
used in correlating its effect.   All solutions in the literature for which the Prandtl 
number is variable also involve variable   pjx, so that PrMr is not necessarily equal 
to Pe^e •    For such cases, it was found that the Prandtl number should be evaluated 
at the enthalpy and pressure corresponding to prMr •   This value of the Prandtl 
number is hereafter denoted as <Tr, 

When the Prandtl number effect is correlated in terms of the partial Prandtl 
number, the effect of energy transport by diffusion must be treated separately.   The 
first exact calculation of this effect is reported in Reference 19, wherein the 
expression: 

Le = 1 

was found to agree well with exact solutions for Nj^g = 1.4 in stagnation point flow. 
In high Mach number flows, however, Equation (A-40) may predict a significant 
diffusion effect under conditions for which no dissociation actually exists, since the 
temperatures within the boundary layer may be well below the stagnation value.   To 
avoid this inconsistency. Equation {A-40) was modified to operate on the local 
reference enthalpy, corresponding to prnr , rather than the stagnation value.   The 
modified expression is given by: 

Calculations made by Cohen (Reference 22) of Lewis number effects for non- 
stagnation boundary layers are shown in Figure 20, along with computations from 
Equation (A-41). 

d. Reference Density-Viscosity Product 

The reference density-viscosity product was first evaluated for zero Mach number 
with various degrees of wall cooling using the solutions of References 20, 23, and 24 
and some unpublished solutions by Halvorson and Cassmeyer of The Boeing Company, 
as shown in Figure 21. 
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PrandtJ number 
Specific heat 
pfi product 

Pr 

O 
7 

Constant 
Constant 
Variable 

D 
23 

Constant 
Constant 
Constant 

A 
22 

Variable 
Variable 
Variable 

i 1  

■n 
y x 

k f 

o ^ 

\A 
8  

.645 v^ 
/^ 

KoW 

i 
.6 .8 1 

Figure 19:   LAMINAR PRANDTL NUMBER EFFECT ON 
REYNOLDS ANALOGY  FACTOR 
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For edge Mach numbers greater than zero, it was found that the reference 
density-viscosity product PrMr can be represented as a function only of Pg^e • 
pwpu and PffUgi w^c-re the latter is the density-viscosity product evaluated at 
stagnation enthalpy and the local pressure.   The correlation obtained is g'ven below: 

p  u   ^ p   u 'r'r     rwrw 

where 

^eW 
PWPW 

1.2 

2 + 
^eW 

^w^w 

1^ 
To 

CA-42} 

(P    M    )    M e  e eff 

and 

K* 

13    3 / „+ We^ 

Pe^e 

K* = 
Ps^sf 

PpM e^e 

1.005 

.005 
/PgH^ 

,2. 
14 

Pe^e/  J 

Equation (A-42) is plotted in Figure 2 (Section in. 1) using the approximation that the 
exponent K*((pe^e)/(PWHW)] is unity.   The contribution of this term is small, and 
Figure 2 can be used to obtain prMr without introducing significant errors.   Sub- 
sequent investigations have shown that PrMr is independent of pressure gradients, as 
demonstrated by comparisons with exact solutions shown in Figure 22. 

e.     Pressure Gradient Effects 

1) Evaluation of J-r and E 

Referring to Equation (A-23) and recalling the earlier comment that C   ,   m, 
Fpr ,  and £ are by definition taken as the flat plate values, it is seen that all pres- 
sure gradient effects are reflected in PrPr and x„n.   These effects can be evaluated 
for similar flows from the solutions published which consider streamwise pressure 
gradients, (e.g. , References 12 and 20) and those which consider crossflow pressure 
gradients (e. g. , References 21 and 22). 
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Beginning with the simplest possible case, two-dimensional flow of an ideal gas 
with unit Prandtl number, and the viscosity proportional to temperature, the equiva- 
lent distance effects can be isolated.   Since pp is always equal to pejie . then prMr 

is also equal to  p n  ■   (Note that pp is not necessarily constant through the flow 
field, but varies with the local boundary layer edge pressure.)  With these values 
incorporated, the equivalent distance expression in Equation (A-24) reduces to: 

i Jo 
p u u   dx 

'0       e e e 

x     =- r ;  (A-43) 
eq   JL      ^^"e I lx1 

In Equation (A-43) the term  PePeue reflects the effects of upstream variations, while 
JL accounts for local streamwise pressare gradient effects on the boundary layer 
profiles. 

A correlation has been fumd for J» which may be written: 

J   = [1+.718(^1 + EgF2 - I)) when    ß>0 

and 

J   - (1 + .718(71+ FgFj, - I)]"1 when   ^<0 (A-44) 

where  ß is the dimensionless pressure gradient parameter similar to that defined by 
the authors of Reference 11.   The parameters   ß,  Fß ,  and Fy, are defined by 
Equations (A-50) to (A-53).   Subsequent investigations of exact solutions for non-unit 
Prandtl number and nonlinear viscosity laws have shown that expressions of the form 
of Equation (A-43) are valid for these more complex conditions as well, either for 
two-dimensional flows with streamwise pressure gradients, or for yawed cylinder 
flow.   The expressions finally adopted are: 

(P-fO    =(PrPr) (A-45) 
ß ß = 0 

and a generalization of Equation (A-43): 

if1 
GT dx 

x =- r-—;  (A-46) 
eq,I     JT G. ' ■        ' 

L L 
Xl 
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where: 

GT = p ^ 
L       r  r e 

(A-47) 
r e 

JT = fl+ .718(^1 + F.    F_     -1)1 when   /3>0 
L     I p,s   i,s ! 

JT = ll+ .718(>/l+ F0    F-     - 1)1 ~1 when    ß<0 (A-48) 
LI p,s   i, s I 

where: 

EL=l+.718(>/l+F^iCF2 c-l)(2Zc)eXpK (A-49) 

exp K = 0 when N < . 05 and . 99 < N < 1. 01, 

exp K = -. 194 exp [ -| N(N-l) 1   when . 05 < N < . 99, 
1    «3 J 

exp K = . 194 exp [ -|(N-r 1  when N > 1. 01,  and N - 4 ^ß- 
1   o J rt    9x 

The subscripts s and c are introduced to distinguish between streamwise and 
crossflow pressure gradients; it should be noted that J^, is concerned only with 
streamwise pressure gradient effects and E,  only with crossflow effects; also, note 
that JL-^ 1.0 for ßs = 0. 

The functions F^.   ß.   Fj, ,  and   Z  are given for either streamwise or crossflow 
pressure gradients by the following expressions: 

(a)   Streamwise Pressure Gradients: 

ß.s 

1 + 2 
•(ZT)e/(ZT)s- 

^s i /I .        e   e      . 

2 
"(ZT) /(ZT) 1 e        's 

i /I e   e     J 
^ 

1 
^s 

(A-50) 

1 ( 



where 

H'sK". 

ue^0 

F. 

t       GT dx 
i   d In u  y L 

ßs = 2TT[^   [GLxj <A-51> 
xl 

2   - .294 /i     , 
s / aw\      ,355 (law\ 

Z.s .402      \I    /    r (A-52) 

and 

P        (ZT) 

s    P (ZT)B 
(A 53) 

The subscript m denotes evaluations at local pressure and a mean boundary layer 
enthalpy defined by. 

i        = .5(1   - i  ) (A-54) 
m, s e     w' v        ' 

The second equality in Equation (A-53) follows from the condition of constant pressure 
across the boundary layer. 

(b)   Crossflow Pressure Gradients: 

F^c 
= 0=1 Hc 

2,( 

Z 
c 

■ . 294 

402       ^r 
355 

2c 
Pm 

(ZT) 
3L _         'm.c 

.c     (ZT>e ,SL 

(A-55) 

(A-56) 

(A-57) 
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The subscript SL refers to the stagnation line and (ZT)m c is evaluated at local 
pressure and a mean boundary layer enthalpy defined by: 

i        = .5(i    + ic T)^ .206(i   - I    CT) a (A-58) 
m,c \v      e,SL e     e.SL     r ' 

With a minor modification of xeq j^,  it is easily shown that the definition of ßs , 
given by Equation (A-51). is identical to the correspond"     m...  ■» leter of Reference 12. 
The expressions for obtaining JL-   Equations (A-48) ana{A-50) to (A-54) were 
developed on the basis of providing the best fit to the exact similar solutions shown in 
Figure 23.   However, the obvious similarity of Equations (A-50) to (A-54) to the 
various reference enthalpies appearing in the literature provides some analytical 
justification for these correlations. 

The equations for obtaining J^ furnished a basis for determing E.   The cross- 
flow pressure gradient parameter ßc was assumed to be unity, which is the value for 
an unyawed cylinder.   Comparisons of E from Equations (A-49) and (A-55) to (A-58) 
for swept cylinder flow are shown in Figure 24.   Similar comparisons with yawed 
cone solutions are presented in Figure 25.   The term (22c)exPK was developed on 
the basis of the yawed cone comparisons.   Note that this term is unity for the cylinder 
case. 

2)     Evaluation of P, 

Correlations of "exact" laminar solutions show that the influence of streamwise 
pressure gradients on skin friction, which is reflected in P^, can be easily related 
to the corresponding effect on Jj^.   The relationship is: 

PL=JL
5 (A-59) 

Comparisons with solutions presented in References 11 and 22 are shown in Figure 26. 
Equation (A-.36) now becomes: 

f1 
GT dx 

'0 x 

S     =-; -.— =-—J (A-60) 

Xl 
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Figure 26: STREAMWISE PRESSURE GRADIENT EFFECT ON SKIN FRICTION 

S.'5 



5.     COMBINED LAMINAR AND TURBULENT METHOD 

The Prf*r computer program described m Appendix D is intended for making 
heat transfer and skin friction predictions for both laminar and turbulent flows.   For 
computer purposes, it is convenient to utilize parameters common to both laminar and 
turbulent boundary layers whenever possible.   A problem is encountered in defining a 
reference Reynolds number since the equivalent distances xe   , Equation (A-43), and 
Seq , Equation (A-60), are usually different for the two types of flow.   To remedy this, 
the following definitions for reference Reynolds numbers are used: 

and 

where 

N 
R.r.Q 

N 
R.r.S 

P     M    U      X T 'r'r e  eq, L 

p  n u S      _ rrrr e eq, L 

Ks^o)2 

(A-61) 

(A-62) 

x,Q 

—    b 
20/_eq1T

> 

.lb     T \   eq, L> 
(A-63) 

x,S 

17 
eq,T 

eq, I^ 
(A-64) 

xi 

f1 
GTdx 

eq, T        fG (A-65) 

4   Parameters defined in this section are used only in the  PrMr computer program 
and except for Appendix C are not used elsewhere in this report. 
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/■ G   dx 
1J 

eq, L       (G. 
(A-66) 

A 1 
T 10 T    10 u x      T = JT     x      T = JT       b      . 

eq. L       L      eq, L      L        eq, L 
(A-67) 

and 

S      T = JT   S      T = JT     b      . 
eq, L      L    eq, L      L      eq, L 

(A-68) 

Definitions for GL,  GT, JL, xeq L,  and Sec.j ^ are given in preceding sections of 
this appendix. 

a.     Laminar Flow 

Using the definitions given above, the general expressions for heat transfer. 
Equation (A-23), and skin friction, Equation (A-34), become; respectively: 

and 

H = 
Sc^l/x.Q   ,, 

a x 
r eq, L 

(V.Q) 

m 
nw-l 

(A-69) 

m 
-        C   ti  PT F    „ 

\v _    x   o   L   x,S /- \rr+l 
u    " S      T I   R,r,s) 

e eq, L 
(A-70) 

where 

QL=JL 

3_ 
10 

and 

W 



b.     Turbulent Flow 

For turbulent flow, the form of Equations (A-69) and (A-70) can be changed to the 
Schultz-Grunow form given by Equations (13) and (14).   The final turbulent equations 
then become: 

. •^"oVx.Q Vr.Q (A.71) 

eq, L       |    o10N  R.r.Q '] 

and 

T       .185^  PT F    0 ND      c 1w o   L   x,S R,r,S 

% =oq>L |lc*10(NR,r,s+3000,|2-5" 
(A-72) 
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APPENDIX B 

SIMPLIFIED p^,. METHOD 

The complete prpr equations presented in the text ot this report are intended for 
computer use only, since manual computations are exceedingly tedious.   However, 
simplified equations have been found that greatly reduce the work required in making 
slide rule calculations with little loss in accuracy.   First, general simplifications 
for arbitrary geometries are presentedj and secondly, equations for a few specific 
body shapes are given.   Comparisons with results obtained using the complete PrHr 

equations are also shown. 

1.     GENERAL SIMPLIFICATIONS 

a.    Evaluation of prfxr 

A convenient method for estimating pr^r presented In Reference 2 provides 
values within about three percent of those obtained using Equation (A-42).   The 
suggested expressions are: 

P.rMr 
= (pe^e)eff 1.6 - .6 

^e^eff 

(PWMW) 

^e^eff^S'^S' 
1.85 - .85 

PS'^S' 

Pe^e 
(B-l) 

Note that Pg'Ms' is evaluated at the stagnation enthalpy and the local pressure, 

b.     prpr Variatio"- '"'ith x 

Unless large variations in wall temperature occur,  prixr can be considered to 
be proportional to pressure along a given streamline.   Also, the effect of the pres- 
sure gradient parameter Jj on heat transfer can usually be neglected.   For example, 
the pressure gradient txfect on the peak turbulent heating rate for a hemisphere is 
only about 3 or 4 percent.   With these approximations. Equation (8) reduces to: 

l.T 
Pu   ^fE)G/4| 

e e )x. 

Ä p u   (rf)   dx 
e e (B-2) 



and 

P  P   = (P M J     (P /P   ) 

The subscript m denotes that the evaluation Is made at approximately the mean 
pressure along the streamline. 

c.    Evaluation of Ej 

For most cases the influence of the following term appearing in Equation (32) 
can be neglected: 

(2*c) 
exp K 

Note that this term is large only when (x/rf) (arf/9x) is small; consequectly, the 
influence of Ej is also usually small.   In addition, it is seen in Figure 7 that o 
varies only from ,68 to .776.   Thus, using an average ar = .728 in computing 

a'355 = .893 r (B-4) 

in Equation (A-56) will result in, at most, an error of 2.4 percent.   Equation (32) 
can now be simplified to 

ET = 1 + 55(yi + F~ '- l) 
\ I,c,o      / 

(^ l+.718(^l + FI>c-ly 
T4 

1 + .718 /\n>F„   ^-i] 
\ I,c,o      ) 

(B-5) 

where 

Fj, )C - 2.22 (ic-.294) 

Equations (A-57) and (A-58) define 2C and Equation (30) defines Z      .   Equation 
(B-5) is plotted in Figure 27 to facilitate computations of E-p. 

d.    Evaluation of £ and Fpr 

For real-gas flow in chemical equilibrium, the diffusion influence parameter 
can be obtained either from Equation (A-41) or Figure 20.   However, this term is 
usually quite close to unity.   The msxlmum value of £ obtained from thermal analysis 
of the reentry vehicle presented in Section VIII was 1.04, representing a correction of 
only 4%. 

HS 



ET      8 

Figure 27:  TURBULENT CROSSaOW MOMENTUM THICKNESS RATIO 
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Similarly, when using Equation (20), the approximation that <TT = .728, or 

645 
a,*        =.815 (B-6) 

can lead to, at most, an error of 4,3 percent. 

e. Summary Heat Transfer Equation 

Using all of the approximations given above, Equations (13) and (15) reduce to: 

HT =-22%—i Vr-Q        2 5B4 <B-7> 
«..T |log10 (NR r Q + 3000)|   ^ 

P      (p   U )      U    X 
N =_i      rVm   e   eq.T 
NR,r.Q    P 2 (B 7) 

m p 
o 

The equivalent distance Xeq,T can t>e obtained using Equation (B-2) and the 
stagnation viscosity p0 from Equation (19), 

f. Momentum Thickness 

An alternate method for computing momentum thickness is provided by: 

0^ = .231 — ^^  (B-9) 
T PU ,    . /XT onnml2-584 

,eUeKo<NR,r.S+30H '10 x  R,r,S 

If the effects of pressure gradient on the boundary layer profiles are neglected 
(J-p = PT = 1.0), the equivalent distances for heat transfer and skin friction are 
equal.   For this case, Equation (B-9) can be written: 

p    _o   FPr    HT 
T    4     ^     pu   Xeq,T 

e e 

H 
~1.015 x      ^ (B-10) 

Peue   eq.T 
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SPECIAL CASES 

In most cases, the most ledious tas!; in computing heating rates is the computa- 
tion of the equivalent distance.   For many common body shapes, Equation (B-2) can 
be simplified further.   The following table summarizes the expressions for equivalent 
distance for some simple configurations. 

Configuration a Xeq,T 

Flat plate All X 

1 

Cone 0 (4/9)x 

^0 
X 

(9/4) + (5/4) N ET 

Swept infinite cylinder 
stagnation line 0          j 

i 
i 

u 
e 

(5/4) (8ve/ay) ET 

Delta wing centerline 0 X 

#) n < 1 i 
1 + (5/4) n(2 -n + (n - i) ET) 

Equations for evaluating N and n are presented in Section V for the respective 
configurations. 

3.     COMPARISONS WITH COMPUTER RESULTS 

Comparisons of Stanton numbers along the stagnation line of a sharp ogive at 
angle of attack are shown in Figure 28a.   The simplified PrMr results were obtained 
using Equation (B-7) together with an equivalent distance computed using Equation 
(B-2).   These results are seen to agree within 2C

I', with those obtained using the PrPr 

program described in Volume HI.   The free stream flow conditions represent a 
typical test condition in the CAL high energy shock tunnel. 

»] 
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Voo   =    18,700 ft/sec 
ALT    =    187,000 ft 

Both calculations are corrected 
for bluntness effects using Eq. (68) 
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b)      Flight, Blunt Delta Wing Centerline 

Figure 28:    STANT0N NUMBERS FROM SIMPLIFIED AND COMPLETE 
p   11   EQUATIONS 
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Similar comparisons along the centerline of a blunt delta wing are presented in 
Figure 28b,   The configuration and flight conditions (V,,,, = 18,700 ft/sec and ALT = 
187,000 ft) correspond to the orbital reentry analysis described in Section Vin.   The 
Stanton numbers obtained from both methods have been corrected for bluntness 
effects using Equation (74).   The momentum thickness used in computing bluntness 
corrections for the simplified Pr^r values were obtained using Equation (B-10). 
Results from the two methods are seen to differ by less than about 4%. 
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APPENDIX C 

TURBULENT NONSIMILAR METHOD 

The primary purpose in developing this method was to provide a means of 
computing complete boundary layer profiles for compressible turbulent flows. 
Preliminary results from this analysis are reported in Reference 25.   The flow 
equations are solved in partial differential form, and unlike previous methods, 
empirical correlations are required only in defining the Reynolds stresses.   Solutions 
obtained in this way are not subject to the usual restrictions regarding profile simi- 
larity; hence, effects of streamwlse pressure and wall temperature gradients are 
easily included.   This approach has been successfully used in treating laminar flows 
for several years (References 1 and 6). 

The turbulent nonslmilar equations have been programmed for both the IBM 7094 
and the Unlvac 1108 digital computers.   This program, including equations and sam- 
ple Lnput sheets, is presented in Volume m.   The existing program Is restricted to 
ideal gases, but real gas effects could be included by adding tables for obtaining gas 
properties as a function of enthalpy and pressure. 

The development of the turbulent nonslmilar method is presented in four parts: 

1. Derivations of flow equations 

2. Evaluation of turbulent stresses 

3. Heat transfer results 

4. Convergence and stability 

1.     DERIVATION OF FLOW EQUATIONS 

Several formulations of the fundamental turbulent flow equations can be found in 
the literature (e.g., References 3 and 7),   Normally, the suggested expressions 
consist of the corresponding laminar equation with an added term, or terms, repre- 
senting the influence of the turbulent fluctuations.   The flow equations can then be 
written for two dimensional flow, in the following form: 

(x-Momentum)     P" ^ -     /   "^dy -r-=--—+ — M---+ T (C-l) 
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(Energy) Pu 1L 
3x 

ay 

w apu . \ ai 

ayl Npr ay >) 

f 8u 

l ay 

(Equation of State) P- PRT 

(C-2) 

(C-3) 

TJ is the effective turbulent shear and q-p is the effective turbulent heat conduction 
term.   It should be noted that T^. and 4j. do not truly represent viscous and conduc- 
tion effects, but account for the net effect of the turbulent fluctuations.   Except for 
these turbulent stress terms, Equations (C-l) and (C-2) are identical with the 
corresponding equations for laminar flow. 

Minor differences exist in the literature concerning both the definition and 
formulation of the turbulent stress terms.   However, in the present analysis, 
empirical correlations are usti in evaluating these terms, and the exact analytical 
formulation is immaterial. 

It is now convenient to introduce a velocity parameter v defined by: 

1  apur     apv 
r    d.i ay 

= 0 (C-4) 

or 

if 9Pu; 
ax dy 

TV streamline divergence parameter r is introduced into Equation (C-4) to 
account for three-dimensional effects.   For laminar flows it is seen from the mass 
conservation equation that v is equal to the velocity component normal to the surface 
(v).   This is not necessarily the case for turbulent flows, because of the fluctuating 
terms denoted by primes appearing in the conservation equation shown below: 

i apur + j_ ap'u'r   apv    apv 
r   ax   ' r     ax       ay       ay 

Using Equation (C-4), Equations (C-l) and (C-2) can be written: 

ap    d i   du       \ — + — (n—+ T 
ax    ay \   ay     T/ 

au    i 
ax   pu 

JLL 
ax pu ay 

V   r) U_ 

u av 

M    ai  + q    + 
pr    ■> 

/   au 
'    ay T 

v ai 
u dS 

(C-5) 

(C-G) 

(C-7) 



Solutions are to be obtained by numerically integrating Equations (C-6) and (C-7) 
with respect to x.   In order to perform this integration, au/9x and dl/dx must be 
expressed explicitly by the flow properties at a given station In x.   That Is, the right 
side of Equations (C-6) and (C-7) cannot contain derivatives with respect to x other 
than aP/ax and 3r/ax, which are specified at all x locations.   The purpose of the 
following derivation Is to obtain an expression f r v that does not contain x 
derivatives other than 9P/9x and 9r/9x. 

Using the equation of state (C-3), Equation (C-4) can be expanded to: 

ay        ^    p T   /      9x   p  \ 
ap/9x   9T/ax   a-/ax'i 

fi)     (C-8) 

We can assume dP/dy « 0, since this analysis Is restricted to thin boundary layers. 
Also, assuming an ideal gas (i = c  T), Equation (C-8) can be further expanded to give: 

av   ~/di/ay      au/ay\   au^ 
 + v   —■—» - u r-^ / =-r—+ u 

ay      v   i i    /    ax 

Then, from Equations (C-6) and (C-7): 

ap/ax     ar/ax   ai/ax      au/ax —_— + .— + u —.— 

au _      v au 
ax        u ay 

(C-9) 

_3i. = B _y ai^ 
ax        u ay (C-10) 

where 

A = 
pu y ax    ay \  ay/ 

ar^ 

ay 

pu ay 
^  at 

L   Pr 

/   au    _ \ 
(C-ll) 

Substituting Equation (C-10) into Equation (C-9): 

av   ^/ai/ay      au/ay\    A    v au      /ap/ax 
 + v    —~-- u —;—^J = A + u    —-— 

9y       v    i i     / u 9y       y    P 

ar/9x\    u 
/     i   \       u ay/   i   \       u ay/ 

(C-12) 
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Making the indicated cancellations and rearranging, Equation (C-12) becomes: 

~ 3u        av _   2 / 3P/3x     ar/9x ^ -       "2 k     ■■2 du        dv      2 /  U — = u    ( 
oy       dy 

^)+uA(1 + !f)-!fB (C-13, 

The subscript i is now used to designate the y location to be considered.   A constant 
increment Ay is used in the following analysis.   Then: 

i = y./Ay 

i-i =yi_1/Ay 

We now use the central difference approximation: 

v. ~ v.  , +-^ i       i-1    2 \8y/.    Uy/^ Ay (C-14) 

or 

Equation (C-13) can now be written: 

2u 
~  /8u\ i/<v,      «      \ /dv\ 2 / dP/dx     dr^dx\ 

1 l-A 

/     u2\   "2 

v
 i '      i 

(C-15) 

Solving for v., 

au.     2u 
 i      i_ 

L ay      Ay J 

2 /dP/dx     dr/dx 
u.      —^— +   i   \     P r ).+ "■ A 

u. (v).   , 
J. (B-uA). -2U.--ili-(il)      u. 
i. 'i         i    Av       \ d\ '.   ,    i 

i i-l 
(C-16) 

97 



Replacing A and B in Equation (C-16) using Equation (C-ll). the final expression 
for Vj now becomes: 

v = 
i öu.    2u. 

 i     i 

9y " % 

2 /ap/ax   ar/ax 
"i2( A    p.     ax ,    pi 

aTn 

*" ay v ay/    av i ipddy \NPr af 
aöp 

"a7 

ay 
Ju 
ay 

^(M^+ r ) 
av \   av     T/ 

+ u 
ap 
ax 

2u 
1-1 

i Ay    \ ay (—) (C-17) 

Vj can now be obtained explicitly from given u and H profiles providing that Tj, q-p, 
ar/ax, and ap/ax are known.   First,  Vj is computed using Equation (C-17) with the 
wall boundary conditions specifying that v0 and (av/ay)0 are both zero.   Next, 
(9v/ay)i   is computed using Equation (C-14).   This procedure is repeated until all 
values of v in the boundary layer are obtained. 

2.     EVALUATION OF TURBULENT STRESSES 

a.    Incompressible Flow 

Published methods for estimating turbulent shear stresses were studied, but 
were found to be unsatisfactory for use in the present analysis.   The Prandtl linear 
mixing length expression provides valid results only when constant shear is assumed. 
The correlations used by von Karman and van Driest require that the boundary layer 
be divided into sublayers, with a separate correlation for each sublayer.   This pro- 
cedure would unnecessarily complicate the solution of Equations (C-6) and (C-7). 

The general form of the correlation for T-J- selected for the turbulent nonsimilar 
method is derived in the following paragraphs. 

o2u 
Assuming incompressible flat plate flow and that  p r-w- << T   , Equations (C-4) 

and (C-6) reduce to: 

r* du 
dy 

ana 

9u 9u 
P„   +  OV  =   T H   ax   K   ay     T 

(C-18) 

(C-19) 
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Following common practice, it is further assumed that the velocity profile and 
boundary layer thickness are given by 

1/« 
-iL=/y) 
u      \ 6 / 

(C-20) 

5 = .J7x (C-21) 

Using Equation (C-20): 

du 

ay 

u \ a( u^=i(S\k\ 
-6/7 

6 /  3(y Ö)     7\ ö/\6 1 (C-22) 

and 

du —- = u 
ax      e 

9('j/ue) 

ä(y/ö) 
*(y/6) 

ax 

u \ /   \-6/7 

fjii a(.v/6) 
ax (C-23) 

where 

a(y/6) _  /y \ /aa i 
ax/ »x 1x2/\ (C-?4) 

Substituting Equation (C-23) into Equation (C-24): 

au 
ax 

ew v)      / aö/ax 
(C-25) 

Also, it is easily shown that: 

(¥. Idy W7^ vdx/ 
(C-26) 

Substituting Equations (C-20). (C-22), (C-25), and (C-26) into Equation (C-22). we 
get: 

(%r (^ aö/ax^/üeV^ 2/7 
aö/(jx\    rfTT 

')V 
(C-27) 
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Combining terms on the left side of Equation (C-27), results- in: 

-2/7      at. 
4   pu2     i^   | -^ (C-28, 

From Equation (C-21): 

ä6      / 4 \ / Ö H-iiKf) (C-20) 

Substituting Equations (C-21) and (C-29) info Equation (C-2S): 

^ -a)l'4Mn 
dy \10/ \   x /\ö/ 

Solving for x in Equation (C-29). we get: 

/o    \1/4 

x = (.37,-5/4(-^)       ^ (C-31, 

Replacing the x in Equation (C-30) with Equation (C-31): 

3/4 
ar„ . . /. /pu \ '     u  M 2/7 

■i7T=-(To)<-^/4(-e)   774(1) 
Equation (C-32) is still unsatisfactory for usage in the turbulent nonsimilar equations, 
since ö is rather arbitrarily defined.   This term can be removed using the following 
substitutions.   Differentiating Equation (C-22) with respect to y gives: 

d u _     / 6 \/   e\/y 4 

(M-ii <C-33, 
3y2 U9/\,2/\« 

or 

13/7  ^2 ia6!ViV"/i m = 1 (C-34) 
ay'' 

Multiplying the right side of Equation (C-32) by Equation (C-34): 

^3/4/  \36/28      / 2 
fi-i 

100 

^Hf)(4)(.37)-(^f(:r\(4) <C-35) 



Noting that: 

(y 6) = (u/ue) 

Equation (C-35) can be expressed by: 

6; 

where 

We now have an acceptable equation describing    dT-j-  ^y.   Note that Equation {C-36) 
depends only on local flow properties and derivatives in y. 

Computations of skin friction made using Equation (C-G). with the exor^ssion for 
d T— Idy given by Equation (C-.'J6) were found to be in poor agreement with experi- 
mental data.   This result is not surprising, considering the approximations used in 
deriving Equation (C-3G).    For example, the contribution of the laminar shear term 
was neglected in deriving Equation (C-36), but was included in making skin friction 
computations.   Also, the 1 '1 power law . rofile results in a finite value of 3u/8y at 
the edge of the boundary lajer, but the correct boundary condition (du/dy)e = 0 is 
imposed on the program equations. 

Equation (C-3G) is useful, however, in that it suggests the general form of the 
required shear parameter given by: 

Computer re-"lts indicated that a and c did not appreciably influence the velocity 
profile.   Several values idr b were tried, and tne resulting profiles were compared 
with the empirical results.   A value of 12 was selected on the basis of these com- 
parisons.   Computed velocity profiles for incompressible flow on a flat plate using 
b = 12 are shown in Figure 29 along with a 1/7 power law profile.   The agreement 
appears reasonably good, although some difference in profile shape is noted. 

The constant   c   and exponent   a   were determined on the basis of comparisons 
of skin friction results from the program with estimates obtained using the well 
established empirical methods.   Analysis of skin friction results from the program 
indicated that the variation in skin friction coefficient with Reynolds number 
d(ln Cf)/d(ln Np^g) is determined by the exponent   a .   After establishing Ihe correct 
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Figure 29:    COMPARISONS OF TURBULENT VELOCITY PROFILES 
FOR INCOMPRESSIBLE FLOW ON A FLAT PLATE 
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trend of Cf with Np e the constant   c   was selected to yield the correct magnitude of 
Cf.   Results obtained using a = .S3" and c = .054 are shown in Figure 30, along with 
the Schultz-Grunow (Reference 9) (      -elation.   The agreement is seen to be good for 
all Reynolds numbers investigated. 

b.     Compressible Flow 

In order to extend the program capability to include compressible flow it was 
necessary, first, to determine thermal effects on the turbulent shear term    9Tj/9y, 
and secondly, to evaluate the turbulent conduction term q-j-.   The turbulent shear and 
conduction were assumed to be related by an effective turbulent Prandtl number 
Npr j in the same way as the corresponding laminar terms.   Thus, 

f di 
Oj.^  ■£. (C-3S) 

where 

Pr.T 

c  =—L 
^u   dv 

Since the turbulent Prandtl number has very little influence on skin friction, it is 
possible to consider thermal effects on the shear stress and turbulent Prandtl number 
separately. 

Appropriate modifications to the turbulent shear were determined by considering 
adiabatic flow on a flat plate.   The compressible form for the turbulent shear gradient 
was assumed to be of the form: 

833 / nnv \ 
, 054 (C-39) 

The selection of the form given by Equation (C-39) was somewhat intuitive, since no 
theoretical basis could be found for estimating compressibility effects. The justifi- 
cation for this selection must be based on comparisons with data. 

Program results were found to furnish good agreement with experimental data 
presented in Reference 26 with d = 4, as shown in Figure 31.   The compressible skin 
friction coefficients were obtained using the Schultz-Grunow method.   The influence 
of Reynolds number on Cj/Cf .      is known to be quite small, and is neglected in 
these comparisons. 
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All experimental data from Ref. 26 
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Figure 31:    MACH NUMBER EFFECT ON TURBULENT SKIN FRICTION 
FOR ADIABATIC FLOW ON A FLAT PLATE 
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The combined effects of Mach number and wall cooling are shown in Figure 32. 
Qualitative agreement between program results and data is noted regarding trends 
with Mach number and wall cooling, but predicted vräues appear to be generally 
lower than the data. 

Unlike skin friction, heat transfer rates are st/ongly influenced by the turbulent 
Prandtl number.   Since the turbulent Prandtl number cannot be obtained directly from 
experimental results, the evaluation is made on the basis of the turbulent recovery 
factor (r), where: 

e      e 

iaw is the adiabatic wall enthalpy.   Ie and ie are the total and static enthalpies eval- 
uated at the edge of the boundary layer.   Experimental results (e.g., Reference 27) 
have shown that for turbulent flat plate flows r is approximately 0. 9.   In order to 
establish the corresponding value of Npr j, program solutions are obtained using 
NPr.T = i'0' 0-85, and 0.71.   The wall temperature is the adiabatic wall temperature 
based on r = . 9. 

Turbulent Prandtl numbers are plotted against r in Figure 33, where r was 
computed by: 

(\/H) -iw - ie 
r = p^  (C-41) 

e      e 

The heat flux q is obtained directly from the program, and H is computed from 
the skin-friction coefficient -ising a Reynolds analogy given by 

H Cf 
P   u      2 N^    „, Ke   e Pr,T 

The recovery factors are shown in Figure 33 tc be correlated by 

(C-42) 

Thus, for r = 0.9 

1 07 
r = Npr(T- (C-43) 

Npr)T-0.9 (C_44) 

The selection of Npr j completes the evaluation of the Reynolds stresses appearing 
in Equations (C-6), (C-7), and (C-17). 
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Figure 32:    COMBINED EFFECTS OF MACH NUMBER AND WALL COOLING 
ON TURBULENT SKIN FRICTION ON A FLAT PLATE 
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3.     HEAT TRANSFER RESULTS 

Comparisons of heating rates calculated using the turbulent nonsimilar and the 
PrVr programs are shown below tor a range of Mach numbers and enthalpy ratios. 

q. Btu/ft2-sec 

Turbulent 

M 
e 

u  , ft^ec 
e 

1   /I 
w   e 

nonsimilar 
method method 

5.06 5946 .502 56. 6 54,0 

5.03 5923 . s 13.8 14.88 

4,77 5840 .204 113.1 108.7             i 

1.75 1993 .^02 4.7 4,8 

1.74 1989 .501 14,8 14.34 

1.70 1926 ,207 26.4 23.0 

Heat transfer rates from the two programs are seen to agree within öSt except for 
the case where Me = 1.7 and iw/Ie = 0,207, 

Comparisons between turbulent heating estimates from the nonsimilar andprMr 

methods for a hemisphere are presented in Figure 34,   The discrepancy seen near 
the stagnation point occurs because the prMr method extrapolates to zero at the 
stagnation point, but the nonsimilar method provides the laminar value at that point. 
At angles greater than about 30 degrees the two methods are in good agreement. 

Heat transfer rates for the linear wall temperature case shown in Figure 10 were 
also computed using the nonsimilar method.   The nonsimilar results are not shown 
since differences with the prMr predictions are so small that they would not be 
discernible. 

4.     ACCURACY AND STABILITY 

It must be kept in mind that the results from the turbulent nonsimilar method do 
not represent solutions to Equations (C-6) and (C-7), but are solutions to a sot of 
algebraic equations approximating the partial differential equations.   First, the size 
of the grid net must be sufficiently small to allow an accurate description of the 
boundary layer profiles.   Secondly, numerical instabilities must be avoided in 
performing the ^tep-by-step integration. 
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a.    Accuracy 

Solutions obtained near the leading edge of a flat plate are clearly not valid, 
sind the boundary layer is described by only a few points.   The minimum number 
of nodes within the boundary layer needed to obtain satisfactory solutions can be 
determined by examining program results along the plate.   Results shown in 
Figure 35a indicate that for incompressible flow over a flat plate, skin-friction 
estimates are within 2 - 3rr of the Karman-Schoenherr values when the velocity at 
the first node from the wall is smaller than 75S? of the value at the boundary layer 
edge.   A similar study was made for compressible flows by assuming that Mach 
number and wall cooling effects on skin friction are constant along the plate.   The 
computed skin-friction coefficients should then be proportional to the corresponding 
incompressible values along the plate.   Typical results shown in Figure 35b indicate 
that the accuracy criterion given for incompressible flows will provide good results 
for compressible flows.   The influence of the incremental streamwise distance Ax 
en accuracy has been found to be negligible provided the numerical instabilities are 
avoided. 

b.    Numerical Instabilities 

Examination of computer results show that numerical instabilities always 
originate near the edge of the boundary layer, where oscillations in velocity and 
enthalpy were sometimes amplified to the extent that the program results became 
meaningless.   Although no rigorous analysis for stability appears possible at this 
ti'ne, an approximate criterion is presented which is in excellent agreement with 
observed computer results.   The instabilities are assumed to arise from the highest 
order differential, i.e., the shear term.   The laminar shear contribution is assumed 
to be negligible compared to the turbulent value.   The momentum equation at the 
boundary layer edge then becomes 

a / Vs33 o 9u /P u  v\ „2 e      . -. /   e eM a u P u    — = . 054 I n    — 
e e  9x V    u     / e „ 2 

e / 

(C-45) 

9y 

Initially, the velocity at one node is given by u = ue •*• t  where e   is the initial 
error in computed velociuy at y = yf . 

e << u. 

i: ± 
m 
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Figure 35:    EFFECT OF Ay ON PREDICTED SKIN-FRICTION COEFFICIENTS 
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N is now defined as the number of nodes from the wall to y€ ,   Hence, 

y, = NAy  and 
W 2i 

A2 A   2 
vdy /yt      Ay 

Equation (41) can now be written: 

'9u\ /MeV^67 

— 1     = - . 054 
V3X4 Vpe 

u / ; e/ 
(NAy) 

833  2e 

Av 

167 
= - ,108 

v e e/ 

(N) 
.833 

(Ay) 
1.167 

(e) (C-46) 

Neutral stability occurs when the difference between u at j'   and the two adjacent 
nodes remains unchanged at the adjacent downstream station, then the velocity 
gradient at the adjacent nodes is given by: 

'A2 > a  u 

.2/ ^ K2 
ay A-   ± Ay    A} 

(C-47) 

then 

(au 
i9x 

= .054 
u    \. 167 pe  \ 

yf i^y \P   U     ; \ e e/ 

N 
..833 

1.167 
(0 (C-48) 

The velocity profiles at the two x locations are sketched below: 

y. ■■ 

i: 

O X = Xj 

• x = x. + Ax 



It is seen that the diflorence between uv   and uv   + Ay is constant at the two x 
locations when 

¥).. 4 €_ 

3 Ax 
ns 

(C-49) 

where Axns is the Ax required for neutral stability.   Substituting Equation (C-49) 
into Equation (C-46) gives: 

4 € 

3 Ax 
= .108 

ns \peue/ 

167 
N 

.833 

1.167 (e) (C-50) 

or 

Ax    = 
ns 

/       \'167 

12.26  |/PeUe\ 1.167 

N-833We/ y (C-51) 

Thus, it is concluded that if Ax exceeds the value given by Equation (C-50) small 
oscillations in velocity will be amplified.   Since small oscillations are unavoidable 
because of round-off errors, it is concluded that stability can be maintained only if 
Ax < Axns.   This conclusion is supported by computer results for two cases shown in 
Figure 36.   The points presented as unstable are from the first x location at which 
oscillations are observed. 

Equation (C-51) defines the maximum incremental distance Ax for neutral 
stability.   In specifying the grid size to be used for normal operation of the turbulent 
nonsimilar program it is recommended that 

Ax 
Ax = 

ns 6.13 

N 
.833 

max 

167 
1.167 

(C-52) 

where Nmax is the number of points to be computed at the most downstream x 
location to be considered. 
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